Solveeit Logo

Question

Question: A rod of length L with sides fully insulated is of a material whose thermal conductivity varies with...

A rod of length L with sides fully insulated is of a material whose thermal conductivity varies with temperature as

K=αTK = \frac{\alpha}{T}, where α\alpha is a constant. The ends of the rod are kept at temperature T1T_1 and T2T_2. The temperature T at x, where x is the distance from the end whose temperature is T1T_1 is

A

T1(T2T1)xLT_1 (\frac{T_2}{T_1})^{\frac{x}{L}}

B

xLlnT2T1\frac{x}{L} \ln \frac{T_2}{T_1}

C

T1eT2xT1LT_1 e^{\frac{T_2x}{T_1L}}

D

T1+T2T1LxT_1 + \frac{T_2-T_1}{L}x

Answer

Option (A) T1(T2T1)xLT_1 (\frac{T_2}{T_1})^{\frac{x}{L}}

Explanation

Solution

Given the steady-state conduction equation, the heat flux qq is constant:

q=KdTdx=αTdTdx.q = -K \frac{dT}{dx} = -\frac{\alpha}{T} \frac{dT}{dx}.

Rearrange:

dTT=qαdx.\frac{dT}{T} = -\frac{q}{\alpha} \, dx.

Integrate from x=0x=0 (T=T1T=T_1) to xx (T=TT=T):

T1TdTT=qα0xdxlnTT1=qαx.\int_{T_1}^{T} \frac{dT'}{T'} = -\frac{q}{\alpha} \int_{0}^{x} dx' \quad \Longrightarrow \quad \ln\frac{T}{T_1} = -\frac{q}{\alpha}x.

At x=Lx=L (T=T2T=T_2):

lnT2T1=qαLqα=1LlnT2T1.\ln\frac{T_2}{T_1} = -\frac{q}{\alpha}L \quad \Longrightarrow \quad \frac{q}{\alpha} = -\frac{1}{L} \ln\frac{T_2}{T_1}.

Substitute back:

lnTT1=xLlnT2T1.\ln\frac{T}{T_1} = \frac{x}{L} \ln\frac{T_2}{T_1}.

Exponentiating:

T=T1(T2T1)xL.T = T_1 \left(\frac{T_2}{T_1}\right)^{\frac{x}{L}}.

Answer: Option (A)


Explanation:

  • Write Fourier's law with K=αTK=\frac{\alpha}{T} and set up the ODE.
  • Integrate after separating variables.
  • Determine the constant using boundary conditions.
  • Simplify to obtain T=T1(T2T1)xLT = T_1 \left(\frac{T_2}{T_1}\right)^{\frac{x}{L}}.