Solveeit Logo

Question

Question: The mass of ${}_{27}^{57}Co: 56.936296u; {}_{26}^{57}Fe: 56.935399u$ are given. Two possible nuclear...

The mass of 2757Co:56.936296u;2657Fe:56.935399u{}_{27}^{57}Co: 56.936296u; {}_{26}^{57}Fe: 56.935399u are given. Two possible nuclear reactions are proposed

(i) 2757Co2657Fe++10e+v{}_{27}^{57}Co \rightarrow {}_{26}^{57}Fe + {}_{+1}^{0}e + v (positron emission) (ii) 2757Co+10e2657Fe+v{}_{27}^{57}Co + {}_{-1}^{0}e \rightarrow {}_{26}^{57}Fe + v (K-shell capture)

Of these two reactions,

A

(i) is possible but (ii) is not possible

B

(i) is not possible but (ii) is possible

C

(i) is possible as well as (ii) is possible

D

(i) is not possible as well as (ii) is not possible

Answer

B

Explanation

Solution

The possibility of a nuclear reaction is determined by the conservation of energy, which translates to a comparison of masses. When atomic masses (MM) are given, we must correctly use the formulas for positron emission and electron capture, accounting for electron masses (mem_e) and electron binding energies (BeB_e).

  1. Positron Emission: The reaction is 2757Co2657Fe+e++v{}_{27}^{57}Co \rightarrow {}_{26}^{57}Fe + e^+ + v. The condition for this reaction to be energetically possible, using atomic masses, is: M(2757Co)>M(2657Fe)+2meM(^{57}_{27}Co) > M(^{57}_{26}Fe) + 2m_e Given masses: M(2757Co)=56.936296uM(^{57}_{27}Co) = 56.936296u and M(2657Fe)=56.935399uM(^{57}_{26}Fe) = 56.935399u. Mass of positron me=0.000548579909um_e = 0.000548579909u. Checking the condition: 56.936296u>56.935399u+2×0.000548579909u56.936296u > 56.935399u + 2 \times 0.000548579909u 56.936296u>56.935399u+0.001097159818u56.936296u > 56.935399u + 0.001097159818u 56.936296u>56.936496159818u56.936296u > 56.936496159818u This inequality is false. Therefore, positron emission is not possible.

  2. K-shell Electron Capture: The reaction is 2757Co+e2657Fe+v{}_{27}^{57}Co + e^- \rightarrow {}_{26}^{57}Fe + v. The condition for electron capture using atomic masses is: M(2757Co)+Be,K(Co)>M(2657Fe)+Be,K(Fe)M(^{57}_{27}Co) + B_{e,K}(Co) > M(^{57}_{26}Fe) + B_{e,K}(Fe) Rearranging this, we get: M(2757Co)M(2657Fe)>Be,K(Fe)Be,K(Co)M(^{57}_{27}Co) - M(^{57}_{26}Fe) > B_{e,K}(Fe) - B_{e,K}(Co). The mass difference is: 56.936296u56.935399u=0.000897u56.936296u - 56.935399u = 0.000897u. The K-shell electron binding energies are approximately Be,K(Co)7.709 keVB_{e,K}(Co) \approx 7.709 \text{ keV} and Be,K(Fe)7.111 keVB_{e,K}(Fe) \approx 7.111 \text{ keV}. The difference is Be,K(Fe)Be,K(Co)7.111 keV7.709 keV=0.598 keVB_{e,K}(Fe) - B_{e,K}(Co) \approx 7.111 \text{ keV} - 7.709 \text{ keV} = -0.598 \text{ keV}. Converting this energy difference to atomic mass units: 0.598 keV×1 u931494.102 keV0.000000642 u-0.598 \text{ keV} \times \frac{1 \text{ u}}{931494.102 \text{ keV}} \approx -0.000000642 \text{ u}. Checking the condition: 0.000897u>0.000000642u0.000897u > -0.000000642u This inequality is true. Therefore, K-shell electron capture is possible.

Since reaction (i) is not possible and reaction (ii) is possible, the correct option is (B).