Solveeit Logo

Question

Question: The number of solutions of the equation $\left(\frac{9}{x} - \frac{9}{\sqrt{x}} + 2\right)\left(\fra...

The number of solutions of the equation (9x9x+2)(2x7x+3)=0\left(\frac{9}{x} - \frac{9}{\sqrt{x}} + 2\right)\left(\frac{2}{x} - \frac{7}{\sqrt{x}} + 3\right) = 0 is:

A

2

B

3

C

1

D

4

Answer

4

Explanation

Solution

Let y=1xy = \frac{1}{\sqrt{x}}. The equation transforms to (9y29y+2)(2y27y+3)=0(9y^2 - 9y + 2)(2y^2 - 7y + 3) = 0. The condition x>0x>0 implies y>0y>0. Solving 9y29y+2=09y^2 - 9y + 2 = 0 yields y=13,23y = \frac{1}{3}, \frac{2}{3}. Solving 2y27y+3=02y^2 - 7y + 3 = 0 yields y=12,3y = \frac{1}{2}, 3. All four yy values are positive. Each positive yy corresponds to a unique positive x=1/y2x = 1/y^2. Thus, there are 4 distinct solutions.