Question
Question: If p, q, r, s are in A.P. and $f(x) = \begin{vmatrix} p + sinx & q + sinx & p-r + sin x \\ q + sinx...
If p, q, r, s are in A.P. and
f(x)=p+sinxq+sinxr+sinxq+sinxr+sinxs+sinxp−r+sinx−1+sinxs−q+sinx such ∫02f(x)dx=−4 then the common difference of the A.P. can be:

- 1
21
1
2
The common difference can be -1 or 1.
Solution
We are given that
f(x)=p+sinxq+sinxr+sinxq+sinxr+sinxs+sinxp−r+sinx−1+sinxs−q+sinxwith p,q,r,s in A.P. Write
q=p+d,r=p+2d,s=p+3d.Thus the matrix becomes
p+sinxp+d+sinxp+2d+sinxp+d+sinxp+2d+sinxp+3d+sinxp−(p+2d)+sinx=sinx−2d−1+sinx(p+3d)−(p+d)+sinx=sinx+2d.Step 1. Subtract the first row from the other two:
Let
R1R2R3=→→[p+sinx,p+d+sinx,sinx−2d],R2−R1:[d,d,(−1+sinx)−(sinx−2d)=2d−1],R3−R1:[2d,2d,(sinx+2d)−(sinx−2d)=4d].So the new matrix (which we call M) is
M=p+sinxd2dp+d+sinxd2dsinx−2d2d−14d.Step 2. Remove p from the 2nd column:
Subtract column 1 from column 2 (C2→C2−C1). Then
Row 1: Rows 2,3: (p+d+sinx)−(p+sinx)d−d=d,=0,2d−2d=0.Thus the matrix becomes
M=p+sinxd2dd00sinx−2d2d−14d.Step 3. Expand the determinant along the 2nd column:
Since the 2nd column is [d,0,0]T we have
f(x)=(−1)1+2d⋅d2d2d−14d=−d[d(4d)−2d(2d−1)].Compute the 2×2 determinant:
d(4d)−2d(2d−1)=4d2−4d2+2d=2d.Thus
f(x)=−d(2d)=−2d2.Notice that the resulting f(x) is independent of x (and therefore independent of sinx) and also independent of p.
Step 4. Use the given integral:
∫02f(x)dx=∫02(−2d2)dx=−2d2⋅2=−4d2.We are told this equals −4. Therefore:
−4d2=−4⟹d2=1.So
d=±1.Among the given options
(A) −1 (B) 21 (C) 1 (D) 2
both −1 and 1 satisfy the equation.