Solveeit Logo

Question

Question: If p, q, r, s are in A.P. and $f(x) = \begin{vmatrix} p + sinx & q + sinx & p-r + sin x \\ q + sinx...

If p, q, r, s are in A.P. and

f(x)=p+sinxq+sinxpr+sinxq+sinxr+sinx1+sinxr+sinxs+sinxsq+sinxf(x) = \begin{vmatrix} p + sinx & q + sinx & p-r + sin x \\ q + sinx & r + sinx & -1 + sinx \\ r + sinx & s + sinx & s-q + sinx \end{vmatrix} such 02f(x)dx=4\int_{0}^{2} f(x)dx=-4 then the common difference of the A.P. can be:

A
  • 1
B

12\frac{1}{2}

C

1

D

2

Answer

The common difference can be -1 or 1.

Explanation

Solution

We are given that

f(x)=p+sinxq+sinxpr+sinxq+sinxr+sinx1+sinxr+sinxs+sinxsq+sinxf(x)=\begin{vmatrix} p+\sin x & q+\sin x & p-r+\sin x\\[1mm] q+\sin x & r+\sin x & -1+\sin x\\[1mm] r+\sin x & s+\sin x & s-q+\sin x \end{vmatrix}

with p,q,r,sp,q,r,s in A.P. Write

q=p+d,r=p+2d,s=p+3d.q=p+d,\quad r=p+2d,\quad s=p+3d.

Thus the matrix becomes

p+sinxp+d+sinx  p(p+2d)+sinx  =  sinx2dp+d+sinxp+2d+sinx1+sinxp+2d+sinxp+3d+sinx(p+3d)(p+d)+sinx=sinx+2d.\begin{array}{ccc} p+\sin x & p+d+\sin x & \;p-(p+2d)+\sin x \;=\; \sin x-2d\\[1mm] p+d+\sin x & p+2d+\sin x & -1+\sin x\\[1mm] p+2d+\sin x & p+3d+\sin x & (p+3d)-(p+d)+\sin x = \sin x+2d \end{array}.

Step 1. Subtract the first row from the other two:

Let

R1=[p+sinx,  p+d+sinx,  sinx2d],R2R2R1:[d,  d,  (1+sinx)(sinx2d)=2d1],R3R3R1:[2d,  2d,  (sinx+2d)(sinx2d)=4d].\begin{array}{rcl} R_1 & = & [\,p+\sin x,\;p+d+\sin x,\;\sin x-2d\,],\\[1mm] R_2 & \to & R_2-R_1: \quad [d,\; d,\; (-1+\sin x)-(\sin x-2d)=2d-1],\\[1mm] R_3 & \to & R_3-R_1: \quad [2d,\; 2d,\; (\sin x+2d)-(\sin x-2d)=4d]. \end{array}

So the new matrix (which we call MM) is

M=(p+sinxp+d+sinxsinx2ddd2d12d2d4d).M=\begin{pmatrix} p+\sin x & p+d+\sin x & \sin x-2d\\[1mm] d & d & 2d-1\\[1mm] 2d & 2d & 4d \end{pmatrix}.

Step 2. Remove pp from the 2nd column:

Subtract column 1 from column 2 (C2C2C1C_2 \to C_2-C_1). Then

Row 1: (p+d+sinx)(p+sinx)=d,Rows 2,3: dd=0,2d2d=0.\begin{array}{rcl} \text{Row 1: } & (p+d+\sin x)-(p+\sin x) &= d,\\[1mm] \text{Rows 2,3: } & d-d &= 0,\quad 2d-2d=0. \end{array}

Thus the matrix becomes

M=(p+sinxdsinx2dd02d12d04d).M=\begin{pmatrix} p+\sin x & d & \sin x-2d\\[1mm] d & 0 & 2d-1\\[1mm] 2d & 0 & 4d \end{pmatrix}.

Step 3. Expand the determinant along the 2nd column:

Since the 2nd column is [d,0,0]T[d,\,0,\,0]^T we have

f(x)=(1)1+2dd2d12d4d=d[d(4d)2d(2d1)].f(x)=(-1)^{1+2}\,d\cdot\begin{vmatrix} d & 2d-1\\[1mm] 2d & 4d\end{vmatrix} = -d\Bigl[d(4d)-2d(2d-1)\Bigr].

Compute the 2×22\times2 determinant:

d(4d)2d(2d1)=4d2  4d2+2d=2d.d(4d)-2d(2d-1)= 4d^2- \;4d^2+2d=2d.

Thus

f(x)=d(2d)=2d2.f(x) = -d\,(2d)= -2d^2.

Notice that the resulting f(x)f(x) is independent of xx (and therefore independent of sinx\sin x) and also independent of pp.

Step 4. Use the given integral:

02f(x)dx=02(2d2)dx=2d22=4d2.\int_{0}^{2} f(x)\,dx = \int_0^2 (-2d^2)\,dx = -2d^2\cdot 2=-4d^2.

We are told this equals 4-4. Therefore:

4d2=4d2=1.-4d^2=-4\quad\Longrightarrow\quad d^2=1.

So

d=±1.d=\pm 1.

Among the given options
(A) 1-1 (B) 12\tfrac{1}{2} (C) 11 (D) 22
both 1-1 and 11 satisfy the equation.