Solveeit Logo

Question

Question: Q.10 $\Delta$ G° of the cell reaction $AgCl(s) + \frac{1}{2}H_2(g) \rightarrow Ag(s) + H^+ + Cl^-$ i...

Q.10 Δ\Delta G° of the cell reaction AgCl(s)+12H2(g)Ag(s)+H++ClAgCl(s) + \frac{1}{2}H_2(g) \rightarrow Ag(s) + H^+ + Cl^- is -21.52 KJ Δ\Delta G° of 2AgCl(s)+H2(g)2Ag(s)+2H++2Cl2AgCl(s) + H_2(g) \rightarrow 2Ag(s) + 2H^+ + 2Cl^- is:

A

-21.52 KJ

B

-43.04 KJ

C

-10.76 KJ

D

43.04 KJ

Answer

-43.04 KJ

Explanation

Solution

The Gibbs free energy change (ΔG\Delta G^\circ) is an extensive property, meaning its value depends on the amount of substance involved in the reaction. If a chemical reaction is multiplied by a stoichiometric factor, the corresponding ΔG\Delta G^\circ value is also multiplied by the same factor.

The given reaction is:

AgCl(s)+12H2(g)Ag(s)+H++ClAgCl(s) + \frac{1}{2}H_2(g) \rightarrow Ag(s) + H^+ + Cl^-

For this reaction, ΔG1=21.52\Delta G^\circ_1 = -21.52 KJ.

The reaction for which ΔG\Delta G^\circ is to be found is:

2AgCl(s)+H2(g)2Ag(s)+2H++2Cl2AgCl(s) + H_2(g) \rightarrow 2Ag(s) + 2H^+ + 2Cl^-

Comparing the two reactions, it is clear that the second reaction is exactly twice the first reaction. If we multiply the first reaction by 2:

2×(AgCl(s)+12H2(g)Ag(s)+H++Cl)2 \times (AgCl(s) + \frac{1}{2}H_2(g) \rightarrow Ag(s) + H^+ + Cl^-)

This gives:

2AgCl(s)+H2(g)2Ag(s)+2H++2Cl2AgCl(s) + H_2(g) \rightarrow 2Ag(s) + 2H^+ + 2Cl^-

Since the second reaction is obtained by multiplying the first reaction by a factor of 2, the ΔG\Delta G^\circ for the second reaction (ΔG2\Delta G^\circ_2) will be twice the ΔG\Delta G^\circ of the first reaction (ΔG1\Delta G^\circ_1).

ΔG2=2×ΔG1\Delta G^\circ_2 = 2 \times \Delta G^\circ_1

ΔG2=2×(21.52 KJ)\Delta G^\circ_2 = 2 \times (-21.52 \text{ KJ})

ΔG2=43.04 KJ\Delta G^\circ_2 = -43.04 \text{ KJ}