Solveeit Logo

Question

Question: Q.1 $Zn | Zn^{2+}_{(ag)} || Cu^{2+}_{(ag)} | Cu$ Eº for the cell is 1.10 V at 25°C. The equilibrium ...

Q.1 ZnZn(ag)2+Cu(ag)2+CuZn | Zn^{2+}_{(ag)} || Cu^{2+}_{(ag)} | Cu Eº for the cell is 1.10 V at 25°C. The equilibrium constant for the cell reaction is of the order of

A

103710^{-37}

B

103710^{37}

C

101710^{-17}

D

101710^{17}

Answer

103710^{37}

Explanation

Solution

The electrochemical cell given is ZnZn(ag)2+Cu(ag)2+CuZn | Zn^{2+}_{(ag)} || Cu^{2+}_{(ag)} | Cu. The standard cell potential (EcellE^\circ_{cell}) is 1.10 V at 25°C.

The cell reaction can be written as:

Anode (oxidation): Zn(s)Zn2+(aq)+2eZn(s) \rightarrow Zn^{2+}(aq) + 2e^-

Cathode (reduction): Cu2+(aq)+2eCu(s)Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)

Overall cell reaction: Zn(s)+Cu2+(aq)Zn2+(aq)+Cu(s)Zn(s) + Cu^{2+}(aq) \rightleftharpoons Zn^{2+}(aq) + Cu(s)

From the balanced cell reaction, the number of electrons transferred (n) is 2.

The relationship between the standard cell potential (EcellE^\circ_{cell}) and the equilibrium constant (K) at 25°C is given by the formula: log10K=nEcell0.0592V\log_{10} K = \frac{nE^\circ_{cell}}{0.0592 \, V}

Given: Ecell=1.10VE^\circ_{cell} = 1.10 \, V n=2n = 2

Substitute these values into the formula: log10K=2×1.100.0592\log_{10} K = \frac{2 \times 1.10}{0.0592} log10K=2.200.0592\log_{10} K = \frac{2.20}{0.0592}

Now, perform the division: log10K37.16\log_{10} K \approx 37.16

To find K, we take the antilog: K=1037.16K = 10^{37.16}

The question asks for the order of the equilibrium constant. Since K=1037.16K = 10^{37.16}, its order of magnitude is 103710^{37}.

Comparing this with the given options:

(1) 103710^{-37}

(2) 103710^{37}

(3) 101710^{-17}

(4) 101710^{17}

The calculated order matches option (2).