Question
Question: The values of $\frac{1}{1+x^{m-n}+x^{m-p}}+\frac{1}{1+x^{n-m}+x^{n-p}}+\frac{1}{1+x^{p-m}+x^{p-n}}$...
The values of 1+xm−n+xm−p1+1+xn−m+xn−p1+1+xp−m+xp−n1

-1
1
2
-2
1
Solution
The problem asks us to simplify the given expression: E=1+xm−n+xm−p1+1+xn−m+xn−p1+1+xp−m+xp−n1
We will simplify each term by multiplying its numerator and denominator by a suitable factor. The goal is to make the denominators of all three terms identical.
Step 1: Simplify the first term Consider the first term: 1+xm−n+xm−p1 We can rewrite the exponents using xa−b=xbxa. So, xm−n=xnxm and xm−p=xpxm. The term becomes: 1+xnxm+xpxm1 To get a common denominator in the denominator, we can multiply the numerator and denominator of the entire fraction by x−m (or xm1). 1+xm−n+xm−p1=(1+xm−n+xm−p)⋅x−m1⋅x−m =x−m⋅1+x−m⋅xm−n+x−m⋅xm−px−m Using the rule xa⋅xb=xa+b: =x−m+x−m+m−n+x−m+m−px−m =x−m+x−n+x−px−m(Term 1)
Step 2: Simplify the second term Consider the second term: 1+xn−m+xn−p1 Similarly, multiply the numerator and denominator by x−n: 1+xn−m+xn−p1=(1+xn−m+xn−p)⋅x−n1⋅x−n =x−n⋅1+x−n⋅xn−m+x−n⋅xn−px−n =x−n+x−n+n−m+x−n+n−px−n =x−n+x−m+x−px−n(Term 2)
Step 3: Simplify the third term Consider the third term: 1+xp−m+xp−n1 Multiply the numerator and denominator by x−p: 1+xp−m+xp−n1=(1+xp−m+xp−n)⋅x−p1⋅x−p =x−p⋅1+x−p⋅xp−m+x−p⋅xp−nx−p =x−p+x−p+p−m+x−p+p−nx−p =x−p+x−m+x−nx−p(Term 3)
Step 4: Add the simplified terms Now, substitute the simplified terms back into the original expression: E=x−m+x−n+x−px−m+x−m+x−n+x−px−n+x−m+x−n+x−px−p Since all three terms have the same denominator (x−m+x−n+x−p), we can add their numerators directly: E=x−m+x−n+x−px−m+x−n+x−p Assuming x−m+x−n+x−p=0 (which is true if x>0), the numerator and denominator are identical, so the expression simplifies to: E=1
The final answer is 1.