Solveeit Logo

Question

Question: The values of $\frac{1}{1+x^{m-n}+x^{m-p}}+\frac{1}{1+x^{n-m}+x^{n-p}}+\frac{1}{1+x^{p-m}+x^{p-n}}$...

The values of 11+xmn+xmp+11+xnm+xnp+11+xpm+xpn\frac{1}{1+x^{m-n}+x^{m-p}}+\frac{1}{1+x^{n-m}+x^{n-p}}+\frac{1}{1+x^{p-m}+x^{p-n}}

A

-1

B

1

C

2

D

-2

Answer

1

Explanation

Solution

The problem asks us to simplify the given expression: E=11+xmn+xmp+11+xnm+xnp+11+xpm+xpnE = \frac{1}{1+x^{m-n}+x^{m-p}}+\frac{1}{1+x^{n-m}+x^{n-p}}+\frac{1}{1+x^{p-m}+x^{p-n}}

We will simplify each term by multiplying its numerator and denominator by a suitable factor. The goal is to make the denominators of all three terms identical.

Step 1: Simplify the first term Consider the first term: 11+xmn+xmp\frac{1}{1+x^{m-n}+x^{m-p}} We can rewrite the exponents using xab=xaxbx^{a-b} = \frac{x^a}{x^b}. So, xmn=xmxnx^{m-n} = \frac{x^m}{x^n} and xmp=xmxpx^{m-p} = \frac{x^m}{x^p}. The term becomes: 11+xmxn+xmxp\frac{1}{1+\frac{x^m}{x^n}+\frac{x^m}{x^p}} To get a common denominator in the denominator, we can multiply the numerator and denominator of the entire fraction by xmx^{-m} (or 1xm\frac{1}{x^m}). 11+xmn+xmp=1xm(1+xmn+xmp)xm\frac{1}{1+x^{m-n}+x^{m-p}} = \frac{1 \cdot x^{-m}}{(1+x^{m-n}+x^{m-p}) \cdot x^{-m}} =xmxm1+xmxmn+xmxmp= \frac{x^{-m}}{x^{-m} \cdot 1 + x^{-m} \cdot x^{m-n} + x^{-m} \cdot x^{m-p}} Using the rule xaxb=xa+bx^a \cdot x^b = x^{a+b}: =xmxm+xm+mn+xm+mp= \frac{x^{-m}}{x^{-m} + x^{-m+m-n} + x^{-m+m-p}} =xmxm+xn+xp(Term 1)= \frac{x^{-m}}{x^{-m} + x^{-n} + x^{-p}} \quad \text{(Term 1)}

Step 2: Simplify the second term Consider the second term: 11+xnm+xnp\frac{1}{1+x^{n-m}+x^{n-p}} Similarly, multiply the numerator and denominator by xnx^{-n}: 11+xnm+xnp=1xn(1+xnm+xnp)xn\frac{1}{1+x^{n-m}+x^{n-p}} = \frac{1 \cdot x^{-n}}{(1+x^{n-m}+x^{n-p}) \cdot x^{-n}} =xnxn1+xnxnm+xnxnp= \frac{x^{-n}}{x^{-n} \cdot 1 + x^{-n} \cdot x^{n-m} + x^{-n} \cdot x^{n-p}} =xnxn+xn+nm+xn+np= \frac{x^{-n}}{x^{-n} + x^{-n+n-m} + x^{-n+n-p}} =xnxn+xm+xp(Term 2)= \frac{x^{-n}}{x^{-n} + x^{-m} + x^{-p}} \quad \text{(Term 2)}

Step 3: Simplify the third term Consider the third term: 11+xpm+xpn\frac{1}{1+x^{p-m}+x^{p-n}} Multiply the numerator and denominator by xpx^{-p}: 11+xpm+xpn=1xp(1+xpm+xpn)xp\frac{1}{1+x^{p-m}+x^{p-n}} = \frac{1 \cdot x^{-p}}{(1+x^{p-m}+x^{p-n}) \cdot x^{-p}} =xpxp1+xpxpm+xpxpn= \frac{x^{-p}}{x^{-p} \cdot 1 + x^{-p} \cdot x^{p-m} + x^{-p} \cdot x^{p-n}} =xpxp+xp+pm+xp+pn= \frac{x^{-p}}{x^{-p} + x^{-p+p-m} + x^{-p+p-n}} =xpxp+xm+xn(Term 3)= \frac{x^{-p}}{x^{-p} + x^{-m} + x^{-n}} \quad \text{(Term 3)}

Step 4: Add the simplified terms Now, substitute the simplified terms back into the original expression: E=xmxm+xn+xp+xnxm+xn+xp+xpxm+xn+xpE = \frac{x^{-m}}{x^{-m} + x^{-n} + x^{-p}} + \frac{x^{-n}}{x^{-m} + x^{-n} + x^{-p}} + \frac{x^{-p}}{x^{-m} + x^{-n} + x^{-p}} Since all three terms have the same denominator (xm+xn+xp)(x^{-m} + x^{-n} + x^{-p}), we can add their numerators directly: E=xm+xn+xpxm+xn+xpE = \frac{x^{-m} + x^{-n} + x^{-p}}{x^{-m} + x^{-n} + x^{-p}} Assuming xm+xn+xp0x^{-m} + x^{-n} + x^{-p} \neq 0 (which is true if x>0x>0), the numerator and denominator are identical, so the expression simplifies to: E=1E = 1

The final answer is 1\boxed{\text{1}}.