Solveeit Logo

Question

Question: Let the angle $\theta$; $0 < \theta < \frac{\pi}{2}$ between two unit vectors $\overline{a}$ & $\ove...

Let the angle θ\theta; 0<θ<π20 < \theta < \frac{\pi}{2} between two unit vectors a\overline{a} & b\overline{b} be Sin1(3/5)Sin^{-1}(3/5). If the vector c=3a+6b+9(a×b)\overline{c} = 3\overline{a} + 6\overline{b} + 9(\overline{a} \times \overline{b}) then the value of 2(c.b)(c.a)2(\overline{c}.\overline{b}) - (\overline{c}.\overline{a})

A

9

B

18

C

27

D

36

Answer

9

Explanation

Solution

The problem requires calculating a linear combination of dot products involving vector c\overline{c}. Given unit vectors a\overline{a} and b\overline{b} with an angle θ\theta such that 0<θ<π20 < \theta < \frac{\pi}{2} and sinθ=35\sin \theta = \frac{3}{5}. From sinθ=35\sin \theta = \frac{3}{5} and θ\theta being in the first quadrant, we find cosθ=1sin2θ=1(35)2=45\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - (\frac{3}{5})^2} = \frac{4}{5}. Since a\overline{a} and b\overline{b} are unit vectors, a=1|\overline{a}| = 1 and b=1|\overline{b}| = 1. The dot product ab=abcosθ=1145=45\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos \theta = 1 \cdot 1 \cdot \frac{4}{5} = \frac{4}{5}. Also, aa=a2=1\overline{a} \cdot \overline{a} = |\overline{a}|^2 = 1 and bb=b2=1\overline{b} \cdot \overline{b} = |\overline{b}|^2 = 1. The vector c\overline{c} is given by c=3a+6b+9(a×b)\overline{c} = 3\overline{a} + 6\overline{b} + 9(\overline{a} \times \overline{b}). We need to find 2(cb)(ca)2(\overline{c} \cdot \overline{b}) - (\overline{c} \cdot \overline{a}).

First, calculate cb\overline{c} \cdot \overline{b}: Using the distributive property of the dot product: cb=(3a+6b+9(a×b))b\overline{c} \cdot \overline{b} = (3\overline{a} + 6\overline{b} + 9(\overline{a} \times \overline{b})) \cdot \overline{b} cb=3(ab)+6(bb)+9((a×b)b)\overline{c} \cdot \overline{b} = 3(\overline{a} \cdot \overline{b}) + 6(\overline{b} \cdot \overline{b}) + 9((\overline{a} \times \overline{b}) \cdot \overline{b}) Since the cross product (a×b)(\overline{a} \times \overline{b}) is orthogonal to both a\overline{a} and b\overline{b}, (a×b)b=0(\overline{a} \times \overline{b}) \cdot \overline{b} = 0. Substituting known values: cb=3(45)+6(1)+9(0)=125+6=12+305=425\overline{c} \cdot \overline{b} = 3(\frac{4}{5}) + 6(1) + 9(0) = \frac{12}{5} + 6 = \frac{12 + 30}{5} = \frac{42}{5}.

Next, calculate ca\overline{c} \cdot \overline{a}: Similarly, using the distributive property: ca=(3a+6b+9(a×b))a\overline{c} \cdot \overline{a} = (3\overline{a} + 6\overline{b} + 9(\overline{a} \times \overline{b})) \cdot \overline{a} ca=3(aa)+6(ba)+9((a×b)a)\overline{c} \cdot \overline{a} = 3(\overline{a} \cdot \overline{a}) + 6(\overline{b} \cdot \overline{a}) + 9((\overline{a} \times \overline{b}) \cdot \overline{a}) Since (a×b)(\overline{a} \times \overline{b}) is orthogonal to a\overline{a}, (a×b)a=0(\overline{a} \times \overline{b}) \cdot \overline{a} = 0. Also, ba=ab\overline{b} \cdot \overline{a} = \overline{a} \cdot \overline{b}. Substituting known values: ca=3(1)+6(45)+9(0)=3+245=15+245=395\overline{c} \cdot \overline{a} = 3(1) + 6(\frac{4}{5}) + 9(0) = 3 + \frac{24}{5} = \frac{15 + 24}{5} = \frac{39}{5}.

Finally, calculate the required expression: 2(cb)(ca)=2(425)(395)2(\overline{c} \cdot \overline{b}) - (\overline{c} \cdot \overline{a}) = 2(\frac{42}{5}) - (\frac{39}{5}) =845395=84395=455=9= \frac{84}{5} - \frac{39}{5} = \frac{84 - 39}{5} = \frac{45}{5} = 9.