Solveeit Logo

Question

Question: Q.1) $\left|1+\frac{3}{x}\right|>2$ $\Rightarrow \left(1+\frac{3}{x}\right)^2>4$ $\Rightarrow 1+\f...

Q.1) 1+3x>2\left|1+\frac{3}{x}\right|>2

(1+3x)2>4\Rightarrow \left(1+\frac{3}{x}\right)^2>4

1+9x2+6x>4\Rightarrow 1+\frac{9}{x^2}+\frac{6}{x}>4

x2+9+6xx2>4\Rightarrow \frac{x^2+9+6x}{x^2}>4

x2+9+6x>4x2\Rightarrow x^2+9+6x>4x^2

4x2x296x<0\Rightarrow 4x^2-x^2-9-6x<0

3x26x9<0\Rightarrow 3x^2-6x-9<0

3x29x+3x9<0\Rightarrow 3x^2-9x+3x-9<0

3x(x3)+3(x3)<0\Rightarrow 3x(x-3)+3(x-3)<0

(3x+3)(x3)<0\Rightarrow (3x+3)(x-3)<0

(x+1)(x3)<0\Rightarrow (x+1)(x-3)<0

Answer

x(1,3)x\in(-1,3)

Explanation

Solution

The problem is to solve the inequality 1+3x>2\left|1+\frac{3}{x}\right|>2.

Method 1: Using the definition of absolute value.

A>b|A| > b is equivalent to A>bA > b or A<bA < -b. In this case, A=1+3xA = 1 + \frac{3}{x} and b=2b = 2. So, we have two cases:

Case 1: 1+3x>21 + \frac{3}{x} > 2

3x>21\frac{3}{x} > 2 - 1

3x>1\frac{3}{x} > 1

3x1>0\frac{3}{x} - 1 > 0

3xx>0\frac{3 - x}{x} > 0

To solve this inequality, we find the critical points where the numerator or denominator is zero. These are x=3x=3 and x=0x=0. We analyze the sign of the expression 3xx\frac{3-x}{x} in the intervals (,0)(-\infty, 0), (0,3)(0, 3), and (3,)(3, \infty).

  • For x(,0)x \in (-\infty, 0), let x=1x=-1. 3(1)1=41=4<0\frac{3 - (-1)}{-1} = \frac{4}{-1} = -4 < 0.

  • For x(0,3)x \in (0, 3), let x=1x=1. 311=21=2>0\frac{3 - 1}{1} = \frac{2}{1} = 2 > 0.

  • For x(3,)x \in (3, \infty), let x=4x=4. 344=14<0\frac{3 - 4}{4} = \frac{-1}{4} < 0.

The inequality 3xx>0\frac{3 - x}{x} > 0 is satisfied for x(0,3)x \in (0, 3).

Case 2: 1+3x<21 + \frac{3}{x} < -2

3x<21\frac{3}{x} < -2 - 1

3x<3\frac{3}{x} < -3

3x+3<0\frac{3}{x} + 3 < 0

3+3xx<0\frac{3 + 3x}{x} < 0

3(1+x)x<0\frac{3(1 + x)}{x} < 0

1+xx<0\frac{1 + x}{x} < 0

The critical points are where the numerator or denominator is zero. These are x=1x=-1 and x=0x=0. We analyze the sign of the expression 1+xx\frac{1+x}{x} in the intervals (,1)(-\infty, -1), (1,0)(-1, 0), and (0,)(0, \infty).

  • For x(,1)x \in (-\infty, -1), let x=2x=-2. 1+(2)2=12=12>0\frac{1 + (-2)}{-2} = \frac{-1}{-2} = \frac{1}{2} > 0.

  • For x(1,0)x \in (-1, 0), let x=0.5x=-0.5. 1+(0.5)0.5=0.50.5=1<0\frac{1 + (-0.5)}{-0.5} = \frac{0.5}{-0.5} = -1 < 0.

  • For x(0,)x \in (0, \infty), let x=1x=1. 1+11=21=2>0\frac{1 + 1}{1} = \frac{2}{1} = 2 > 0.

The inequality 1+xx<0\frac{1 + x}{x} < 0 is satisfied for x(1,0)x \in (-1, 0).

The solution to the original inequality is the union of the solutions from Case 1 and Case 2. Solution set = (0,3)(1,0)(0, 3) \cup (-1, 0). This can also be written as x(1,3)x \in (-1, 3) and x0x \neq 0.

Method 2: Squaring both sides.

1+3x>2\left|1+\frac{3}{x}\right|>2 Square both sides: (1+3x)2>4\left(1+\frac{3}{x}\right)^2 > 4.

1+213x+(3x)2>41 + 2 \cdot 1 \cdot \frac{3}{x} + \left(\frac{3}{x}\right)^2 > 4

1+6x+9x2>41 + \frac{6}{x} + \frac{9}{x^2} > 4

Combine terms on the left side: x2x2+6xx2+9x2>4\frac{x^2}{x^2} + \frac{6x}{x^2} + \frac{9}{x^2} > 4

x2+6x+9x2>4\frac{x^2 + 6x + 9}{x^2} > 4

Subtract 4 from both sides: x2+6x+9x24>0\frac{x^2 + 6x + 9}{x^2} - 4 > 0

x2+6x+94x2x2>0\frac{x^2 + 6x + 9 - 4x^2}{x^2} > 0

3x2+6x+9x2>0\frac{-3x^2 + 6x + 9}{x^2} > 0

Factor the numerator: 3(x22x3)x2>0\frac{-3(x^2 - 2x - 3)}{x^2} > 0

3(x+1)(x3)x2>0\frac{-3(x+1)(x-3)}{x^2} > 0

Divide by -3 and reverse the inequality sign: (x+1)(x3)x2<0\frac{(x+1)(x-3)}{x^2} < 0

For this inequality to hold, the numerator (x+1)(x3)(x+1)(x-3) and the denominator x2x^2 must have opposite signs. Since x20x^2 \ge 0, and x0x \neq 0 (from the original inequality), we have x2>0x^2 > 0. Therefore, the numerator must be negative: (x+1)(x3)<0(x+1)(x-3) < 0

The critical points are x=1x=-1 and x=3x=3. The quadratic expression (x+1)(x3)(x+1)(x-3) is a parabola opening upwards, so it is negative between the roots. The solution to (x+1)(x3)<0(x+1)(x-3) < 0 is x(1,3)x \in (-1, 3). However, we must also satisfy the condition that the denominator x2x^2 is non-zero, which means x0x \neq 0. So, the solution is x(1,3)x \in (-1, 3) and x0x \neq 0. This gives the solution set (1,0)(0,3)(-1, 0) \cup (0, 3).

The provided solution incorrectly concludes that the solution is x(1,3)x \in (-1, 3) after obtaining (x+1)(x3)<0(x+1)(x-3) < 0. It failed to consider the restriction x0x \neq 0 imposed by the original inequality.

The final answer is (1,0)(0,3)\boxed{(-1, 0) \cup (0, 3)}.

Explanation of the solution: The inequality is 1+3x>2\left|1+\frac{3}{x}\right|>2. This is equivalent to 1+3x>21+\frac{3}{x} > 2 or 1+3x<21+\frac{3}{x} < -2.

Case 1: 1+3x>23x>13xx>01+\frac{3}{x} > 2 \Rightarrow \frac{3}{x} > 1 \Rightarrow \frac{3-x}{x} > 0. This inequality holds for x(0,3)x \in (0, 3).

Case 2: 1+3x<23x<33+3xx<01+xx<01+\frac{3}{x} < -2 \Rightarrow \frac{3}{x} < -3 \Rightarrow \frac{3+3x}{x} < 0 \Rightarrow \frac{1+x}{x} < 0. This inequality holds for x(1,0)x \in (-1, 0).

The solution is the union of the solutions from Case 1 and Case 2, which is (1,0)(0,3)(-1, 0) \cup (0, 3).

The final answer is (1,0)(0,3)\boxed{(-1, 0) \cup (0, 3)}.

Subject: Mathematics Chapter: Relations and Functions (Inequalities are typically covered in this context, or in Algebra) Topic: Inequalities involving absolute values

Difficulty level: Medium

Question type: descriptive (although it asks to solve, the format of the provided solution suggests it is a problem where steps and final answer are expected)

The provided solution is incorrect because it does not exclude x=0x=0 from the solution set. The correct solution is (1,0)(0,3)(-1, 0) \cup (0, 3).

Since I need to provide the solution based on the provided format, which seems to be a step-by-step derivation, I will present the corrected steps based on the squaring method.

Corrected solution based on the provided approach:

1+3x>2\left|1+\frac{3}{x}\right|>2 Square both sides: (1+3x)2>4\left(1+\frac{3}{x}\right)^2 > 4

1+6x+9x2>41 + \frac{6}{x} + \frac{9}{x^2} > 4

x2+6x+9x2>4\frac{x^2 + 6x + 9}{x^2} > 4

x2+6x+9x24>0\frac{x^2 + 6x + 9}{x^2} - 4 > 0

x2+6x+94x2x2>0\frac{x^2 + 6x + 9 - 4x^2}{x^2} > 0

3x2+6x+9x2>0\frac{-3x^2 + 6x + 9}{x^2} > 0

3(x22x3)x2>0\frac{-3(x^2 - 2x - 3)}{x^2} > 0

Since x2>0x^2 > 0 for x0x \neq 0, we need 3(x22x3)>0-3(x^2 - 2x - 3) > 0.

x22x3<0x^2 - 2x - 3 < 0

(x+1)(x3)<0(x+1)(x-3) < 0

This inequality holds for x(1,3)x \in (-1, 3). Considering the restriction x0x \neq 0, the solution is x(1,3){0}x \in (-1, 3) \setminus \{0\}, which is x(1,0)(0,3)x \in (-1, 0) \cup (0, 3).

The final answer is (1,0)(0,3)(-1, 0) \cup (0, 3).

The final answer is (1,0)(0,3)\boxed{(-1, 0) \cup (0, 3)}.