Question
Question: $\int 1^x.2^x.3^x.....n^x dx$...
∫1x.2x.3x.....nxdx

Answer
ln(n!)(n!)x+C
Explanation
Solution
The integrand 1x.2x.3x.....nx simplifies to (1⋅2⋅3⋅⋯⋅n)x=(n!)x. The integral then becomes ∫(n!)xdx. This is a standard integral of the form ∫axdx, where a=n!. Using the formula ∫axdx=lnaax+C, we substitute a=n! to get the result ln(n!)(n!)x+C.