Solveeit Logo

Question

Question: If the vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are linearly independent satisfying $(\...

If the vectors a\overrightarrow{a} and b\overrightarrow{b} are linearly independent satisfying (3tanθ+1)a+(3secθ2)b=0(\sqrt{3}\tan{\theta}+1)\overrightarrow{a}+(\sqrt{3}\sec{\theta}-2)\overrightarrow{b}=0, then the most general values of θ\theta are

A

θ=nππ6\theta = n\pi - \frac{\pi}{6}, where nZn \in \mathbb{Z}

B

θ=2nπ±π6\theta = 2n\pi \pm \frac{\pi}{6}, where nZn \in \mathbb{Z}

C

θ=2nππ6\theta = 2n\pi - \frac{\pi}{6}, where nZn \in \mathbb{Z}

D

θ=nπ+π6\theta = n\pi + \frac{\pi}{6}, where nZn \in \mathbb{Z}

Answer

θ=2nππ6\theta = 2n\pi - \frac{\pi}{6}, where nZn \in \mathbb{Z}

Explanation

Solution

  • For linearly independent vectors a\overrightarrow{a} and b\overrightarrow{b}, if c1a+c2b=0c_1\overrightarrow{a} + c_2\overrightarrow{b} = \overrightarrow{0}, then c1=0c_1=0 and c2=0c_2=0.
  • This leads to solving two equations:
    1. 3tanθ+1=0    tanθ=13\sqrt{3}\tan{\theta}+1 = 0 \implies \tan{\theta} = -\frac{1}{\sqrt{3}}
    2. 3secθ2=0    secθ=23    cosθ=32\sqrt{3}\sec{\theta}-2 = 0 \implies \sec{\theta} = \frac{2}{\sqrt{3}} \implies \cos{\theta} = \frac{\sqrt{3}}{2}
  • The general solution for tanθ=13\tan{\theta} = -\frac{1}{\sqrt{3}} is θ=nππ6\theta = n\pi - \frac{\pi}{6}, where nZn \in \mathbb{Z}.
  • The general solution for cosθ=32\cos{\theta} = \frac{\sqrt{3}}{2} is θ=2mπ±π6\theta = 2m\pi \pm \frac{\pi}{6}, where mZm \in \mathbb{Z}.
  • To satisfy both conditions, we need to find the intersection of these solution sets.
    • If θ=2mπ+π6\theta = 2m\pi + \frac{\pi}{6}, then nππ6=2mπ+π6    (n2m)π=π3    n2m=13n\pi - \frac{\pi}{6} = 2m\pi + \frac{\pi}{6} \implies (n-2m)\pi = \frac{\pi}{3} \implies n-2m = \frac{1}{3}, which has no integer solutions for n,mn, m.
    • If θ=2mππ6\theta = 2m\pi - \frac{\pi}{6}, then nππ6=2mππ6    nπ=2mπ    n=2mn\pi - \frac{\pi}{6} = 2m\pi - \frac{\pi}{6} \implies n\pi = 2m\pi \implies n=2m. This means nn must be an even integer.
  • Therefore, the common solution is of the form θ=2kππ6\theta = 2k\pi - \frac{\pi}{6}, where kZk \in \mathbb{Z}.