Question
Question: If tan (π cos θ) = cot (π sin θ), then sin (θ+ π/4) equals...
If tan (π cos θ) = cot (π sin θ), then sin (θ+ π/4) equals

21
21
221
23
221
Solution
-
Concept: Use the identity
cot x = tan (π/2 - x). -
Solution: Given
tan (π cos θ) = cot (π sin θ).
We can writecot (π sin θ)astan (π/2 - π sin θ).
So,tan (π cos θ) = tan (π/2 - π sin θ).
This impliesπ cos θ = nπ + (π/2 - π sin θ)for some integern.
Dividing byπ, we getcos θ = n + 1/2 - sin θ.
Rearranging,cos θ + sin θ = n + 1/2.
We know thatcos θ + sin θ = √2 (sin θ cos(π/4) + cos θ sin(π/4)) = √2 sin (θ + π/4).
So,√2 sin (θ + π/4) = n + 1/2.
We know that the range ofcos θ + sin θis[-√2, √2].
Therefore,-√2 ≤ n + 1/2 ≤ √2.
Approximately,-1.414 ≤ n + 0.5 ≤ 1.414.
Subtracting 0.5 from all parts:-1.914 ≤ n ≤ 0.914.
The possible integer values fornare0and-1.Case 1:
n = 0
√2 sin (θ + π/4) = 0 + 1/2
√2 sin (θ + π/4) = 1/2
sin (θ + π/4) = 1 / (2√2)Case 2:
n = -1
√2 sin (θ + π/4) = -1 + 1/2
√2 sin (θ + π/4) = -1/2
sin (θ + π/4) = -1 / (2√2)Since the options are positive, we choose the positive value.
-
Final Answer:
sin (θ + π/4) = 1 / (2√2)
