Solveeit Logo

Question

Question: If p is a polynomial of 3 degree, $y^2 = p(x)$ and $Y = (tan^{-1}x)^2$, then which of the following ...

If p is a polynomial of 3 degree, y2=p(x)y^2 = p(x) and Y=(tan1x)2Y = (tan^{-1}x)^2, then which of the following options is/are equal to

2ddx(y3d2ydx2)×((x2+1)2d2Ydx2+2x(1+x2)dYdx)2\frac{d}{dx}(y^3\frac{d^2y}{dx^2})\times((x^2+1)^2\frac{d^2Y}{dx^2}+2x(1+x^2)\frac{dY}{dx})?

A

2(p(x)+p(x))2(p'(x) + p'''(x))

B

2p(x)p(x)2p''(x)p'''(x)

C

2p(x)p(x)2 p(x)p'''(x)

D

2p(x)p(x)2 p'(x)p''(x)

Answer

2p(x)p(x)2 p(x)p'''(x)

Explanation

Solution

Let the given expression be EE. We need to evaluate E=2ddx(y3d2ydx2)×((x2+1)2d2Ydx2+2x(1+x2)dYdx)E = 2\frac{d}{dx}(y^3\frac{d^2y}{dx^2})\times((x^2+1)^2\frac{d^2Y}{dx^2}+2x(1+x^2)\frac{dY}{dx}).

First, consider the term 2ddx(y3d2ydx2)2\frac{d}{dx}(y^3\frac{d^2y}{dx^2}). We are given y2=p(x)y^2 = p(x). Differentiating with respect to xx: 2ydydx=p(x)2y \frac{dy}{dx} = p'(x) Differentiating again with respect to xx: 2yd2ydx2+2(dydx)2=p(x)2y \frac{d^2y}{dx^2} + 2 (\frac{dy}{dx})^2 = p''(x) Differentiating a third time with respect to xx: 2yd3ydx3+2dydxd2ydx2+4dydxd2ydx2=p(x)2y \frac{d^3y}{dx^3} + 2 \frac{dy}{dx} \frac{d^2y}{dx^2} + 4 \frac{dy}{dx} \frac{d^2y}{dx^2} = p'''(x) 2yd3ydx3+6dydxd2ydx2=p(x)2y \frac{d^3y}{dx^3} + 6 \frac{dy}{dx} \frac{d^2y}{dx^2} = p'''(x)

Now, evaluate ddx(y3d2ydx2)\frac{d}{dx}(y^3\frac{d^2y}{dx^2}): ddx(y3d2ydx2)=3y2dydxd2ydx2+y3d3ydx3\frac{d}{dx}(y^3\frac{d^2y}{dx^2}) = 3y^2 \frac{dy}{dx} \frac{d^2y}{dx^2} + y^3 \frac{d^3y}{dx^3} So, 2ddx(y3d2ydx2)=2(3y2dydxd2ydx2+y3d3ydx3)=6y2dydxd2ydx2+2y3d3ydx32\frac{d}{dx}(y^3\frac{d^2y}{dx^2}) = 2(3y^2 \frac{dy}{dx} \frac{d^2y}{dx^2} + y^3 \frac{d^3y}{dx^3}) = 6y^2 \frac{dy}{dx} \frac{d^2y}{dx^2} + 2y^3 \frac{d^3y}{dx^3} Factor out y2y^2: 2ddx(y3d2ydx2)=y2(6dydxd2ydx2+2yd3ydx3)2\frac{d}{dx}(y^3\frac{d^2y}{dx^2}) = y^2 (6 \frac{dy}{dx} \frac{d^2y}{dx^2} + 2y \frac{d^3y}{dx^3}) From the third derivative equation, 6dydxd2ydx2+2yd3ydx3=p(x)6 \frac{dy}{dx} \frac{d^2y}{dx^2} + 2y \frac{d^3y}{dx^3} = p'''(x). Substituting this, we get: 2ddx(y3d2ydx2)=y2p(x)2\frac{d}{dx}(y^3\frac{d^2y}{dx^2}) = y^2 p'''(x) Since y2=p(x)y^2 = p(x), we have: 2ddx(y3d2ydx2)=p(x)p(x)2\frac{d}{dx}(y^3\frac{d^2y}{dx^2}) = p(x) p'''(x).

Next, consider the term ((x2+1)2d2Ydx2+2x(1+x2)dYdx)((x^2+1)^2\frac{d^2Y}{dx^2}+2x(1+x^2)\frac{dY}{dx}). We are given Y=(tan1x)2Y = (\tan^{-1}x)^2. dYdx=ddx((tan1x)2)=2(tan1x)11+x2=2tan1x1+x2\frac{dY}{dx} = \frac{d}{dx}((\tan^{-1}x)^2) = 2 (\tan^{-1}x) \cdot \frac{1}{1+x^2} = \frac{2 \tan^{-1}x}{1+x^2}. Let the second term be S=((x2+1)2d2Ydx2+2x(1+x2)dYdx)S = ((x^2+1)^2\frac{d^2Y}{dx^2}+2x(1+x^2)\frac{dY}{dx}). We can factor out (x2+1)(x^2+1): S=(x2+1)[(x2+1)d2Ydx2+2xdYdx]S = (x^2+1) \left[ (x^2+1)\frac{d^2Y}{dx^2} + 2x\frac{dY}{dx} \right]. The expression in the square bracket is the derivative of the product (x2+1)dYdx(x^2+1)\frac{dY}{dx}: ddx((x2+1)dYdx)=(x2+1)d2Ydx2+2xdYdx\frac{d}{dx}((x^2+1)\frac{dY}{dx}) = (x^2+1)\frac{d^2Y}{dx^2} + 2x\frac{dY}{dx}. Let's evaluate (x2+1)dYdx(x^2+1)\frac{dY}{dx}: (x2+1)dYdx=(x2+1)(2tan1x1+x2)=2tan1x(x^2+1)\frac{dY}{dx} = (x^2+1) \left(\frac{2 \tan^{-1}x}{1+x^2}\right) = 2 \tan^{-1}x. Now, differentiate this with respect to xx: ddx((x2+1)dYdx)=ddx(2tan1x)=21+x2\frac{d}{dx}((x^2+1)\frac{dY}{dx}) = \frac{d}{dx}(2 \tan^{-1}x) = \frac{2}{1+x^2}. So, the expression in the square bracket is 21+x2\frac{2}{1+x^2}. Substituting this back into SS: S=(x2+1)[21+x2]=2S = (x^2+1) \left[ \frac{2}{1+x^2} \right] = 2.

Finally, the given expression EE is the product of the two parts: E=(2ddx(y3d2ydx2))×((x2+1)2d2Ydx2+2x(1+x2)dYdx)E = \left( 2\frac{d}{dx}(y^3\frac{d^2y}{dx^2}) \right) \times \left( (x^2+1)^2\frac{d^2Y}{dx^2}+2x(1+x^2)\frac{dY}{dx} \right) E=(p(x)p(x))×(2)E = (p(x) p'''(x)) \times (2) E=2p(x)p(x)E = 2 p(x) p'''(x).

Comparing this with the given options: (A) 2(p(x)+p(x))2(p'(x) + p'''(x)) (B) 2p(x)p(x)2p''(x)p'''(x) (C) 2p(x)p(x)2 p(x)p'''(x) (D) 2p(x)p(x)2 p'(x)p''(x)

The result matches option (C).

The final answer is 2p(x)p(x)\boxed{2 p(x)p'''(x)}.

The final answer is 2p(x)p(x)\boxed{2 p(x)p'''(x)}. The calculation for the first part 2ddx(y3d2ydx2)2\frac{d}{dx}(y^3\frac{d^2y}{dx^2}) relies on the derivatives of yy obtained from y2=p(x)y^2=p(x). The calculation for the second part ((x2+1)2d2Ydx2+2x(1+x2)dYdx)((x^2+1)^2\frac{d^2Y}{dx^2}+2x(1+x^2)\frac{dY}{dx}) relies on the derivatives of Y=(tan1x)2Y=(\tan^{-1}x)^2. The structure of the expression allows for simplification by recognizing it as (x2+1)×ddx((x2+1)dYdx)(x^2+1) \times \frac{d}{dx}((x^2+1)\frac{dY}{dx}).