Solveeit Logo

Question

Question: Given the following standard electrode potentials, the $K_{sp}$ for $PbBr_2$ is $PbBr_2(s) + 2e^- \...

Given the following standard electrode potentials, the KspK_{sp} for PbBr2PbBr_2 is

PbBr2(s)+2ePb(s)+2Br(aq);E=0.248VPbBr_2(s) + 2e^- \longrightarrow Pb(s) + 2Br^-(aq); E^\circ = -0.248 V Pb2+(aq)+2ePb(s);E=0.126VPb^{2+}(aq) + 2e^- \longrightarrow Pb(s); \quad E^\circ = -0.126 V

A

7.4 x 10510^{-5}

B

4.9 x 101410^{-14}

C

5.2 x 10610^{-6}

D

2.3 x 101310^{-13}

Answer

7.4 x 10510^{-5}

Explanation

Solution

To determine the solubility product constant (KspK_{sp}) for PbBr2PbBr_2, we need to relate the given standard electrode potentials to the dissolution reaction of PbBr2PbBr_2.

The dissolution reaction for PbBr2PbBr_2 is: PbBr2(s)Pb2+(aq)+2Br(aq)PbBr_2(s) \rightleftharpoons Pb^{2+}(aq) + 2Br^-(aq)

We are given the following standard electrode potentials:

  1. PbBr2(s)+2ePb(s)+2Br(aq);E1=0.248VPbBr_2(s) + 2e^- \longrightarrow Pb(s) + 2Br^-(aq); E^\circ_1 = -0.248 V
  2. Pb2+(aq)+2ePb(s);E2=0.126VPb^{2+}(aq) + 2e^- \longrightarrow Pb(s); \quad E^\circ_2 = -0.126 V

To obtain the dissolution reaction, we can consider a hypothetical electrochemical cell where PbBr2PbBr_2 dissolves. This can be achieved by subtracting the second half-reaction from the first half-reaction:

(PbBr2(s)+2ePb(s)+2Br(aq))(PbBr_2(s) + 2e^- \longrightarrow Pb(s) + 2Br^-(aq)) (Pb2+(aq)+2ePb(s))- (Pb^{2+}(aq) + 2e^- \longrightarrow Pb(s))

PbBr2(s)Pb2+(aq)2Br(aq)PbBr_2(s) - Pb^{2+}(aq) \longrightarrow 2Br^-(aq)

Rearranging this gives the dissolution reaction: PbBr2(s)Pb2+(aq)+2Br(aq)PbBr_2(s) \longrightarrow Pb^{2+}(aq) + 2Br^-(aq)

The standard cell potential (EcellE^\circ_{cell}) for this reaction is the difference between the standard electrode potentials: Ecell=E1E2E^\circ_{cell} = E^\circ_1 - E^\circ_2 Ecell=(0.248V)(0.126V)E^\circ_{cell} = (-0.248 V) - (-0.126 V) Ecell=0.248V+0.126VE^\circ_{cell} = -0.248 V + 0.126 V Ecell=0.122VE^\circ_{cell} = -0.122 V

This EcellE^\circ_{cell} is related to the equilibrium constant (KspK_{sp} in this case) by the Nernst equation at equilibrium: Ecell=RTnFlnKspE^\circ_{cell} = \frac{RT}{nF} \ln K_{sp} At 298 K (standard temperature), this simplifies to: Ecell=0.0591nlogKspE^\circ_{cell} = \frac{0.0591}{n} \log K_{sp}

In the dissolution reaction PbBr2(s)Pb2+(aq)+2Br(aq)PbBr_2(s) \rightleftharpoons Pb^{2+}(aq) + 2Br^-(aq), the number of electrons transferred (nn) is 2 (as seen in the half-reactions involving Pb2+Pb^{2+} and PbBr2PbBr_2).

Substitute the values into the equation: 0.122V=0.0591V2logKsp-0.122 V = \frac{0.0591 V}{2} \log K_{sp} 0.122=0.02955logKsp-0.122 = 0.02955 \log K_{sp}

Now, solve for logKsp\log K_{sp}: logKsp=0.1220.02955\log K_{sp} = \frac{-0.122}{0.02955} logKsp4.128595\log K_{sp} \approx -4.128595

To find KspK_{sp}, take the antilog: Ksp=104.128595K_{sp} = 10^{-4.128595} Ksp=10(5+0.871405)K_{sp} = 10^{(-5 + 0.871405)} Ksp=100.871405×105K_{sp} = 10^{0.871405} \times 10^{-5} Ksp7.437×105K_{sp} \approx 7.437 \times 10^{-5}

Comparing this value with the given options, option A is the closest.