Solveeit Logo

Question

Question: Find the Integrals (i) $\int \frac{\log x}{x^3}dx$ (ii)...

Find the Integrals

(i) logxx3dx\int \frac{\log x}{x^3}dx (ii)

Answer

logxx3dx=2logx+14x2+C\int \frac{\log x}{x^3} dx = -\frac{2\log x + 1}{4x^2} + C

Explanation

Solution

The integral can be solved using integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du.

Let u=logxu = \log x and dv=1x3dx=x3dxdv = \frac{1}{x^3} dx = x^{-3} dx.

Now, we find dudu and vv: du=ddx(logx)dx=1xdxdu = \frac{d}{dx}(\log x) dx = \frac{1}{x} dx v=x3dx=x3+13+1=x22=12x2v = \int x^{-3} dx = \frac{x^{-3+1}}{-3+1} = \frac{x^{-2}}{-2} = -\frac{1}{2x^2}

Substitute these into the integration by parts formula: logxx3dx=(logx)(12x2)(12x2)(1x)dx\int \frac{\log x}{x^3} dx = (\log x) \left(-\frac{1}{2x^2}\right) - \int \left(-\frac{1}{2x^2}\right) \left(\frac{1}{x}\right) dx =logx2x2(12x3)dx= -\frac{\log x}{2x^2} - \int \left(-\frac{1}{2x^3}\right) dx =logx2x2+12x3dx= -\frac{\log x}{2x^2} + \frac{1}{2} \int x^{-3} dx Now, integrate x3x^{-3}: x3dx=x3+13+1=x22=12x2\int x^{-3} dx = \frac{x^{-3+1}}{-3+1} = \frac{x^{-2}}{-2} = -\frac{1}{2x^2} Substitute this back into the expression: =logx2x2+12(12x2)+C= -\frac{\log x}{2x^2} + \frac{1}{2} \left(-\frac{1}{2x^2}\right) + C =logx2x214x2+C= -\frac{\log x}{2x^2} - \frac{1}{4x^2} + C To combine the terms, find a common denominator: =2logx4x214x2+C= -\frac{2\log x}{4x^2} - \frac{1}{4x^2} + C =2logx+14x2+C= -\frac{2\log x + 1}{4x^2} + C