Question
Question: Find the Integrals (i) $\int \frac{\log x}{x^3}dx$ (ii)...
Find the Integrals
(i) ∫x3logxdx (ii)

Answer
∫x3logxdx=−4x22logx+1+C
Explanation
Solution
The integral can be solved using integration by parts formula: ∫udv=uv−∫vdu.
Let u=logx and dv=x31dx=x−3dx.
Now, we find du and v: du=dxd(logx)dx=x1dx v=∫x−3dx=−3+1x−3+1=−2x−2=−2x21
Substitute these into the integration by parts formula: ∫x3logxdx=(logx)(−2x21)−∫(−2x21)(x1)dx =−2x2logx−∫(−2x31)dx =−2x2logx+21∫x−3dx Now, integrate x−3: ∫x−3dx=−3+1x−3+1=−2x−2=−2x21 Substitute this back into the expression: =−2x2logx+21(−2x21)+C =−2x2logx−4x21+C To combine the terms, find a common denominator: =−4x22logx−4x21+C =−4x22logx+1+C