Solveeit Logo

Question

Question: Find relation between $x$, $y$ and $z$ if \[x^2 + 9y^2 + 25z^2 = xyz\Bigl(\frac{15}{x} + \frac{5}{y}...

Find relation between xx, yy and zz if x2+9y2+25z2=xyz(15x+5y+3z)x^2 + 9y^2 + 25z^2 = xyz\Bigl(\frac{15}{x} + \frac{5}{y} + \frac{3}{z}\Bigr)

A

x=3y=5zx = 3y = 5z

B

x=2y=3zx = 2y = 3z

C

x=3y=5zx = -3y = 5z

D

x=3y=5zx = -3y = -5z

Answer

x=3y=5zx = 3y = 5z

Explanation

Solution

Step 1. Expand RHS:

xyz(15x+5y+3z)=15yz+5xz+3xy.xyz\Bigl(\frac{15}{x} + \frac{5}{y} + \frac{3}{z}\Bigr) =15\,yz + 5\,xz + 3\,xy.

Step 2. Bring all terms to one side:

x25xz3xy+9y215yz+25z2=0.x^2 - 5xz - 3xy + 9y^2 - 15yz + 25z^2 = 0.

Step 3. Test the option x=3y=5zx = 3y = 5z.
Let y=ty = t, then x=3tx = 3t, z=35tz = \tfrac{3}{5}t.

  • LHS:
x2+9y2+25z2=9t2+9t2+25(35t)2=9t2+9t2+9t2=27t2.x^2 + 9y^2 + 25z^2 =9t^2 + 9t^2 + 25\Bigl(\tfrac{3}{5}t\Bigr)^2 =9t^2 + 9t^2 + 9t^2 = 27t^2.
  • RHS:
xyz=3tt35t=95t3,15x+5y+3z=153t+5t+335t=5/t+5/t+5/t=15/t.xyz=3t \cdot t \cdot \tfrac{3}{5}t = \frac{9}{5}t^3, \quad \frac{15}{x} + \frac{5}{y} + \frac{3}{z} =\frac{15}{3t} + \frac{5}{t} + \frac{3}{\tfrac{3}{5}t} =5/t + 5/t + 5/t = 15/t. RHS=95t3×15t=27t2.\text{RHS} = \frac{9}{5}t^3 \times \frac{15}{t} = 27t^2.

Since LHS = RHS, the relation holds only for x=3y=5zx=3y=5z.