Solveeit Logo

Question

Question: Find $\frac{dy}{dx}$ for $y = \frac{(\cos x).\sqrt{x} + e^{\sec^{-1}x} + (\ln x).\tan x^{2024}}{x^{2...

Find dydx\frac{dy}{dx} for y=(cosx).x+esec1x+(lnx).tanx2024x2023tan1(lnx)secexy = \frac{(\cos x).\sqrt{x} + e^{\sec^{-1}x} + (\ln x).\tan x^{2024}}{x^{2023}\tan^{-1}(\ln x) - \sec e^x}

Answer

(x2023tan1(lnx)secex)(xsinx+cosx2x+esec1xxx21+tan(x2024)x+2024x2023lnxsec2(x2024))((cosx)x+esec1x+(lnx)tan(x2024))(2023x2022tan1(lnx)+x20221+(lnx)2exsec(ex)tan(ex))(x2023tan1(lnx)secex)2\frac{\left(x^{2023}\tan^{-1}(\ln x) - \sec e^x\right) \left(-\sqrt{x}\sin x + \frac{\cos x}{2\sqrt{x}} + \frac{e^{\sec^{-1}x}}{|x|\sqrt{x^2-1}} + \frac{\tan(x^{2024})}{x} + 2024x^{2023}\ln x \sec^2(x^{2024})\right) - \left((\cos x)\sqrt{x} + e^{\sec^{-1}x} + (\ln x)\tan(x^{2024})\right) \left(2023x^{2022}\tan^{-1}(\ln x) + \frac{x^{2022}}{1+(\ln x)^2} - e^x\sec(e^x)\tan(e^x)\right)}{\left(x^{2023}\tan^{-1}(\ln x) - \sec e^x\right)^2}

Explanation

Solution

To find dydx\frac{dy}{dx} for the given function, we will use the quotient rule for differentiation, which states that if y=N(x)D(x)y = \frac{N(x)}{D(x)}, then dydx=D(x)dNdxN(x)dDdx(D(x))2\frac{dy}{dx} = \frac{D(x) \frac{dN}{dx} - N(x) \frac{dD}{dx}}{(D(x))^2}.

Let the given function be y=N(x)D(x)y = \frac{N(x)}{D(x)}, where:

N(x)=(cosx)x+esec1x+(lnx)tan(x2024)N(x) = (\cos x)\sqrt{x} + e^{\sec^{-1}x} + (\ln x)\tan(x^{2024})

D(x)=x2023tan1(lnx)sec(ex)D(x) = x^{2023}\tan^{-1}(\ln x) - \sec(e^x)

First, we calculate dNdx\frac{dN}{dx} by differentiating each term in N(x)N(x):

  1. Derivative of (cosx)x(\cos x)\sqrt{x}: Using the product rule, ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv'.

    ddx((cosx)x1/2)=(sinx)x1/2+(cosx)12x1/2=xsinx+cosx2x\frac{d}{dx}((\cos x)x^{1/2}) = (-\sin x)x^{1/2} + (\cos x)\frac{1}{2}x^{-1/2} = -\sqrt{x}\sin x + \frac{\cos x}{2\sqrt{x}}

  2. Derivative of esec1xe^{\sec^{-1}x}: Using the chain rule, ddx(ef(x))=ef(x)f(x)\frac{d}{dx}(e^{f(x)}) = e^{f(x)}f'(x).

    ddx(esec1x)=esec1xddx(sec1x)=esec1x1xx21\frac{d}{dx}(e^{\sec^{-1}x}) = e^{\sec^{-1}x} \cdot \frac{d}{dx}(\sec^{-1}x) = e^{\sec^{-1}x} \cdot \frac{1}{|x|\sqrt{x^2-1}}

  3. Derivative of (lnx)tan(x2024)(\ln x)\tan(x^{2024}): Using the product rule and chain rule.

    ddx((lnx)tan(x2024))=ddx(lnx)tan(x2024)+(lnx)ddx(tan(x2024))\frac{d}{dx}((\ln x)\tan(x^{2024})) = \frac{d}{dx}(\ln x) \cdot \tan(x^{2024}) + (\ln x) \cdot \frac{d}{dx}(\tan(x^{2024}))

    =1xtan(x2024)+(lnx)sec2(x2024)ddx(x2024)= \frac{1}{x}\tan(x^{2024}) + (\ln x) \cdot \sec^2(x^{2024}) \cdot \frac{d}{dx}(x^{2024})

    =1xtan(x2024)+(lnx)sec2(x2024)(2024x2023)= \frac{1}{x}\tan(x^{2024}) + (\ln x) \cdot \sec^2(x^{2024}) \cdot (2024x^{2023})

    =tan(x2024)x+2024x2023lnxsec2(x2024)= \frac{\tan(x^{2024})}{x} + 2024x^{2023}\ln x \sec^2(x^{2024})

Combining these, dNdx\frac{dN}{dx}: dNdx=xsinx+cosx2x+esec1xxx21+tan(x2024)x+2024x2023lnxsec2(x2024)\frac{dN}{dx} = -\sqrt{x}\sin x + \frac{\cos x}{2\sqrt{x}} + \frac{e^{\sec^{-1}x}}{|x|\sqrt{x^2-1}} + \frac{\tan(x^{2024})}{x} + 2024x^{2023}\ln x \sec^2(x^{2024})

Next, we calculate dDdx\frac{dD}{dx} by differentiating each term in D(x)D(x):

  1. Derivative of x2023tan1(lnx)x^{2023}\tan^{-1}(\ln x): Using the product rule and chain rule.

    ddx(x2023tan1(lnx))=ddx(x2023)tan1(lnx)+x2023ddx(tan1(lnx))\frac{d}{dx}(x^{2023}\tan^{-1}(\ln x)) = \frac{d}{dx}(x^{2023})\tan^{-1}(\ln x) + x^{2023}\frac{d}{dx}(\tan^{-1}(\ln x))

    =2023x2022tan1(lnx)+x202311+(lnx)2ddx(lnx)= 2023x^{2022}\tan^{-1}(\ln x) + x^{2023} \cdot \frac{1}{1+(\ln x)^2} \cdot \frac{d}{dx}(\ln x)

    =2023x2022tan1(lnx)+x202311+(lnx)21x= 2023x^{2022}\tan^{-1}(\ln x) + x^{2023} \cdot \frac{1}{1+(\ln x)^2} \cdot \frac{1}{x}

    =2023x2022tan1(lnx)+x20221+(lnx)2= 2023x^{2022}\tan^{-1}(\ln x) + \frac{x^{2022}}{1+(\ln x)^2}

  2. Derivative of sec(ex)\sec(e^x): Using the chain rule, ddx(sec(f(x)))=sec(f(x))tan(f(x))f(x)\frac{d}{dx}(\sec(f(x))) = \sec(f(x))\tan(f(x))f'(x).

    ddx(sec(ex))=sec(ex)tan(ex)ddx(ex)=exsec(ex)tan(ex)\frac{d}{dx}(\sec(e^x)) = \sec(e^x)\tan(e^x) \cdot \frac{d}{dx}(e^x) = e^x\sec(e^x)\tan(e^x)

Combining these, dDdx\frac{dD}{dx}: dDdx=2023x2022tan1(lnx)+x20221+(lnx)2exsec(ex)tan(ex)\frac{dD}{dx} = 2023x^{2022}\tan^{-1}(\ln x) + \frac{x^{2022}}{1+(\ln x)^2} - e^x\sec(e^x)\tan(e^x)

Finally, substitute N(x)N(x), D(x)D(x), dNdx\frac{dN}{dx}, and dDdx\frac{dD}{dx} into the quotient rule formula: dydx=(x2023tan1(lnx)secex)(xsinx+cosx2x+esec1xxx21+tan(x2024)x+2024x2023lnxsec2(x2024))((cosx)x+esec1x+(lnx)tan(x2024))(2023x2022tan1(lnx)+x20221+(lnx)2exsec(ex)tan(ex))(x2023tan1(lnx)secex)2\frac{dy}{dx} = \frac{\left(x^{2023}\tan^{-1}(\ln x) - \sec e^x\right) \left(-\sqrt{x}\sin x + \frac{\cos x}{2\sqrt{x}} + \frac{e^{\sec^{-1}x}}{|x|\sqrt{x^2-1}} + \frac{\tan(x^{2024})}{x} + 2024x^{2023}\ln x \sec^2(x^{2024})\right) - \left((\cos x)\sqrt{x} + e^{\sec^{-1}x} + (\ln x)\tan(x^{2024})\right) \left(2023x^{2022}\tan^{-1}(\ln x) + \frac{x^{2022}}{1+(\ln x)^2} - e^x\sec(e^x)\tan(e^x)\right)}{\left(x^{2023}\tan^{-1}(\ln x) - \sec e^x\right)^2}

This is the required derivative dydx\frac{dy}{dx}. Due to the extreme complexity of the function, the derivative is also extremely complex and cannot be simplified further.