Question
Question: f and g be two positive real valued functions defined on [-1,1] such that $f(-x) = \frac{1}{f(x)}$ a...
f and g be two positive real valued functions defined on [-1,1] such that f(−x)=f(x)1 and g is an even function with ∫−11g(x)dx=1 then I=∫−11f(x)g(x)dx satisfies
A
I < 2
B
I > 2
C
I = 1
D
I ≥ 1
Answer
I ≥ 1
Explanation
Solution
We are given that:
- f(−x)=f(x)1 for all x∈[−1,1] and f(x)>0,
- g is even, i.e., g(−x)=g(x),
- ∫−11g(x)dx=1.
Let
I=∫−11f(x)g(x)dx.Substitute x→−x:
I=∫−11f(−x)g(−x)dx=∫−11f(x)1g(x)dx.Thus, we have
I=∫−11f(x)1g(x)dx.Adding the two expressions:
2I=∫−11(f(x)+f(x)1)g(x)dx.Since f(x)>0,
f(x)+f(x)1≥2(AM-GM inequality),with equality if and only if f(x)=1.
Therefore,
2I≥∫−112g(x)dx=2∫−11g(x)dx=2,which gives:
I≥1.