Solveeit Logo

Question

Question: f and g be two positive real valued functions defined on [-1,1] such that $f(-x) = \frac{1}{f(x)}$ a...

f and g be two positive real valued functions defined on [-1,1] such that f(x)=1f(x)f(-x) = \frac{1}{f(x)} and g is an even function with 11g(x)dx=1\int_{-1}^{1} g(x)dx = 1 then I=11f(x)g(x)dxI = \int_{-1}^{1} f(x)g(x)dx satisfies

A

I < 2

B

I > 2

C

I = 1

D

I ≥ 1

Answer

I ≥ 1

Explanation

Solution

We are given that:

  • f(x)=1f(x)f(-x)=\frac{1}{f(x)} for all x[1,1]x \in [-1,1] and f(x)>0f(x)>0,
  • gg is even, i.e., g(x)=g(x)g(-x) = g(x),
  • 11g(x)dx=1\displaystyle \int_{-1}^{1} g(x) \, dx = 1.

Let

I=11f(x)g(x)dx.I = \int_{-1}^{1} f(x)g(x) \, dx.

Substitute xxx \to -x:

I=11f(x)g(x)dx=111f(x)g(x)dx.I = \int_{-1}^{1} f(-x)g(-x) \, dx = \int_{-1}^{1} \frac{1}{f(x)}g(x) \, dx.

Thus, we have

I=111f(x)g(x)dx.I = \int_{-1}^{1} \frac{1}{f(x)}g(x) \, dx.

Adding the two expressions:

2I=11(f(x)+1f(x))g(x)dx.2I = \int_{-1}^{1} \left(f(x) + \frac{1}{f(x)}\right)g(x) \, dx.

Since f(x)>0f(x)>0,

f(x)+1f(x)2(AM-GM inequality),f(x) + \frac{1}{f(x)} \geq 2 \quad \text{(AM-GM inequality)},

with equality if and only if f(x)=1f(x)=1.

Therefore,

2I112g(x)dx=211g(x)dx=2,2I \geq \int_{-1}^{1} 2\,g(x)\,dx = 2\int_{-1}^{1} g(x)\,dx = 2,

which gives:

I1.I \geq 1.