Solveeit Logo

Question

Question: $\begin{array}{l}\log_{3} 512\\\log_{3} 8\end{array}$ $\begin{array}{l}\log_{2} 3\\\log_{4} 3\end{ar...

log3512log38\begin{array}{l}\log_{3} 512\\\log_{3} 8\end{array} log23log43\begin{array}{l}\log_{2} 3\\\log_{4} 3\end{array} log83log34\begin{array}{l}\log_{8} 3\\\log_{3} 4\end{array} is log35log49\begin{array}{l}\log_{3} 5\\\log_{4} 9\end{array} equal to

A

5

B

7

C

10

D

12

Answer

10

Explanation

Solution

The question is interpreted as the product of two determinants. The first determinant is log3512log43log38log49\begin{vmatrix} \log_{3}512 & \log_{4}3 \\ \log_{3}8 & \log_{4}9 \end{vmatrix}. Evaluating the terms using logarithm properties: log3512=9log32\log_{3}512 = 9\log_{3}2, log43=12log23\log_{4}3 = \frac{1}{2}\log_{2}3, log38=3log32\log_{3}8 = 3\log_{3}2, log49=log23\log_{4}9 = \log_{2}3. The determinant is (9log32)(log23)(12log23)(3log32)=932=152(9\log_{3}2)(\log_{2}3) - (\frac{1}{2}\log_{2}3)(3\log_{3}2) = 9 - \frac{3}{2} = \frac{15}{2}.

The second determinant is log23log83log34log34\begin{vmatrix} \log_{2}3 & \log_{8}3 \\ \log_{3}4 & \log_{3}4 \end{vmatrix}. Evaluating the terms: log23\log_{2}3, log83=13log23\log_{8}3 = \frac{1}{3}\log_{2}3, log34=2log32\log_{3}4 = 2\log_{3}2. The determinant is (log23)(2log32)(13log23)(2log32)=223=43(\log_{2}3)(2\log_{3}2) - (\frac{1}{3}\log_{2}3)(2\log_{3}2) = 2 - \frac{2}{3} = \frac{4}{3}.

The product is 152×43=10\frac{15}{2} \times \frac{4}{3} = 10.