Solveeit Logo

Question

Question: A finite conducting wire XY carries a current $I$. The magnetic field $d\overrightarrow{B}$ due to i...

A finite conducting wire XY carries a current II. The magnetic field dBd\overrightarrow{B} due to infinitesimal element dld\overrightarrow{l} of the conducting wire at a point PP as shown in figure is:

A

dB=μ04πi2(dl×rr)d\overrightarrow{B} = \frac{\mu_0}{4\pi}i^2(\frac{d\overrightarrow{l}\times\overrightarrow{r}}{r})

B

dB=μ04πi(dl×rr3)d\overrightarrow{B} = \frac{\mu_0}{4\pi}i(\frac{d\overrightarrow{l}\times\overrightarrow{r}}{r^3})

C

dB=μ04πi(dl×rr)d\overrightarrow{B} = \frac{\mu_0}{4\pi}i(\frac{d\overrightarrow{l}\times\overrightarrow{r}}{r})

D

dB=μ04πi2(dl×rr2)d\overrightarrow{B} = \frac{\mu_0}{4\pi}i^2(\frac{d\overrightarrow{l}\times\overrightarrow{r}}{r^2})

Answer

(2)

Explanation

Solution

The magnetic field dBd\overrightarrow{B} produced by an infinitesimal current element IdlI d\overrightarrow{l} at a point PP located at a position vector r\overrightarrow{r} relative to the element is given by the Biot-Savart Law: dB=μ04πIdl×rr3d\overrightarrow{B} = \frac{\mu_0}{4\pi} \frac{I d\overrightarrow{l} \times \overrightarrow{r}}{r^3} where μ0\mu_0 is the permeability of free space, II is the current, dld\overrightarrow{l} is the vector representing the infinitesimal length of the wire element, r\overrightarrow{r} is the position vector from the wire element to the point PP, and r=rr = |\overrightarrow{r}| is the distance from the element to the point.

In the given question, the current is denoted by II in the text, but by ii in the options. Assuming ii in the options represents the current II, the Biot-Savart Law becomes: dB=μ04πidl×rr3d\overrightarrow{B} = \frac{\mu_0}{4\pi} \frac{i d\overrightarrow{l} \times \overrightarrow{r}}{r^3}

Comparing this formula with the given options: (1) dB=μ04πi2(dl×rr)d\overrightarrow{B} = \frac{\mu_0}{4\pi}i^2(\frac{d\overrightarrow{l}\times\overrightarrow{r}}{r}): Incorrect. The current dependence is i2i^2 instead of ii, and the denominator is rr instead of r3r^3. (2) dB=μ04πi(dl×rr3)d\overrightarrow{B} = \frac{\mu_0}{4\pi}i(\frac{d\overrightarrow{l}\times\overrightarrow{r}}{r^3}): Correct. This matches the Biot-Savart Law. (3) dB=μ04πi(dl×rr)d\overrightarrow{B} = \frac{\mu_0}{4\pi}i(\frac{d\overrightarrow{l}\times\overrightarrow{r}}{r}): Incorrect. The denominator is rr instead of r3r^3. (4) dB=μ04πi2(dl×rr2)d\overrightarrow{B} = \frac{\mu_0}{4\pi}i^2(\frac{d\overrightarrow{l}\times\overrightarrow{r}}{r^2}): Incorrect. The current dependence is i2i^2 instead of ii, and the denominator is r2r^2 instead of r3r^3.

Therefore, option (2) is the correct expression for the magnetic field dBd\overrightarrow{B}.