Solveeit Logo

Question

Question: Which of the following elementary operations has been applied to the matrix $A = \begin{bmatrix} 8 &...

Which of the following elementary operations has been applied to the matrix A=[8528]A = \begin{bmatrix} 8 & 5 \\ 2 & 8 \end{bmatrix} such that the new matrix is [122128]\begin{bmatrix} 12 & 21 \\ 2 & 8 \end{bmatrix}?

A

R1R12R2R_1 \rightarrow R_1 - 2R_2

B

R12R1+R2R_1 \rightarrow 2R_1 + R_2

C

R1R1+R2R_1 \rightarrow R_1 + R_2

D

R1R1+2R2R_1 \rightarrow R_1 + 2R_2

Answer

D

Explanation

Solution

The original matrix is A=[8528]A = \begin{bmatrix} 8 & 5 \\ 2 & 8 \end{bmatrix}. The new matrix is [122128]\begin{bmatrix} 12 & 21 \\ 2 & 8 \end{bmatrix}. The second row is unchanged. We check the options for operations on the first row. Applying R1R1+2R2R_1 \rightarrow R_1 + 2R_2 to the first row [85]\begin{bmatrix} 8 & 5 \end{bmatrix} gives [85]+2[28]=[85]+[416]=[1221]\begin{bmatrix} 8 & 5 \end{bmatrix} + 2\begin{bmatrix} 2 & 8 \end{bmatrix} = \begin{bmatrix} 8 & 5 \end{bmatrix} + \begin{bmatrix} 4 & 16 \end{bmatrix} = \begin{bmatrix} 12 & 21 \end{bmatrix}. This matches the first row of the new matrix.