Solveeit Logo

Question

Question: Q. $v=2sin(t)\hat{i} + 2cos(t)\hat{j}$ find i) $acd^n$ at $t=\frac{\pi}{6}$ sec. ii) $\vec{s}$ at $\...

Q. v=2sin(t)i^+2cos(t)j^v=2sin(t)\hat{i} + 2cos(t)\hat{j} find i) acdnacd^n at t=π6t=\frac{\pi}{6} sec. ii) s\vec{s} at π6\frac{\pi}{6} sec. if Particle started at t=0 sec.

Answer

i) a(π6)=3i^j^\vec{a}(\frac{\pi}{6}) = \sqrt{3}\hat{i} - \hat{j}

ii) s(π6)=(23)i^+j^\vec{s}(\frac{\pi}{6}) = (2 - \sqrt{3})\hat{i} + \hat{j}

Explanation

Solution

Given the velocity of the particle as a function of time: v(t)=2sin(t)i^+2cos(t)j^\vec{v}(t) = 2\sin(t)\hat{i} + 2\cos(t)\hat{j}

i) To find the acceleration a(t)\vec{a}(t), we differentiate the velocity vector with respect to time: a(t)=dvdt=ddt(2sin(t)i^+2cos(t)j^)\vec{a}(t) = \frac{d\vec{v}}{dt} = \frac{d}{dt}(2\sin(t)\hat{i} + 2\cos(t)\hat{j}) a(t)=2cos(t)i^2sin(t)j^\vec{a}(t) = 2\cos(t)\hat{i} - 2\sin(t)\hat{j}

Now, evaluate the acceleration at t=π6t=\frac{\pi}{6} sec: a(π6)=2cos(π6)i^2sin(π6)j^\vec{a}(\frac{\pi}{6}) = 2\cos(\frac{\pi}{6})\hat{i} - 2\sin(\frac{\pi}{6})\hat{j} Using cos(π6)=32\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} and sin(π6)=12\sin(\frac{\pi}{6}) = \frac{1}{2}: a(π6)=2(32)i^2(12)j^=3i^j^\vec{a}(\frac{\pi}{6}) = 2(\frac{\sqrt{3}}{2})\hat{i} - 2(\frac{1}{2})\hat{j} = \sqrt{3}\hat{i} - \hat{j}

ii) To find the displacement s(t)\vec{s}(t), we integrate the velocity vector with respect to time: s(t)=v(t)dt=(2sin(t)i^+2cos(t)j^)dt\vec{s}(t) = \int \vec{v}(t) dt = \int (2\sin(t)\hat{i} + 2\cos(t)\hat{j}) dt s(t)=(2cos(t)+C1)i^+(2sin(t)+C2)j^\vec{s}(t) = (-2\cos(t) + C_1)\hat{i} + (2\sin(t) + C_2)\hat{j} where C1C_1 and C2C_2 are constants of integration. We can write this as s(t)=2cos(t)i^+2sin(t)j^+C\vec{s}(t) = -2\cos(t)\hat{i} + 2\sin(t)\hat{j} + \vec{C}, where C=C1i^+C2j^\vec{C} = C_1\hat{i} + C_2\hat{j}.

The particle started at t=0t=0 sec. Assuming the particle started from the origin, the displacement at t=0t=0 is zero, i.e., s(0)=0\vec{s}(0) = \vec{0}. s(0)=(2cos(0)+C1)i^+(2sin(0)+C2)j^=0\vec{s}(0) = (-2\cos(0) + C_1)\hat{i} + (2\sin(0) + C_2)\hat{j} = \vec{0} (2(1)+C1)i^+(2(0)+C2)j^=0(-2(1) + C_1)\hat{i} + (2(0) + C_2)\hat{j} = \vec{0} (2+C1)i^+C2j^=0i^+0j^(-2 + C_1)\hat{i} + C_2\hat{j} = 0\hat{i} + 0\hat{j} This implies 2+C1=0    C1=2-2 + C_1 = 0 \implies C_1 = 2 and C2=0C_2 = 0.

So, the displacement vector is: s(t)=(2cos(t)+2)i^+(2sin(t)+0)j^=(22cos(t))i^+2sin(t)j^\vec{s}(t) = (-2\cos(t) + 2)\hat{i} + (2\sin(t) + 0)\hat{j} = (2 - 2\cos(t))\hat{i} + 2\sin(t)\hat{j}

Now, evaluate the displacement at t=π6t=\frac{\pi}{6} sec: s(π6)=(22cos(π6))i^+2sin(π6)j^\vec{s}(\frac{\pi}{6}) = (2 - 2\cos(\frac{\pi}{6}))\hat{i} + 2\sin(\frac{\pi}{6})\hat{j} Using cos(π6)=32\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} and sin(π6)=12\sin(\frac{\pi}{6}) = \frac{1}{2}: s(π6)=(22(32))i^+2(12)j^\vec{s}(\frac{\pi}{6}) = (2 - 2(\frac{\sqrt{3}}{2}))\hat{i} + 2(\frac{1}{2})\hat{j} s(π6)=(23)i^+j^\vec{s}(\frac{\pi}{6}) = (2 - \sqrt{3})\hat{i} + \hat{j}

Explanation:

i) Acceleration is the time derivative of velocity. Differentiate v(t)\vec{v}(t) to get a(t)\vec{a}(t). Substitute t=π6t=\frac{\pi}{6} into a(t)\vec{a}(t).

ii) Displacement is the time integral of velocity. Integrate v(t)\vec{v}(t) to get s(t)\vec{s}(t), including a constant of integration. Use the initial condition s(0)=0\vec{s}(0)=\vec{0} (assuming starting from origin) to find the constant. Substitute t=π6t=\frac{\pi}{6} into s(t)\vec{s}(t).