Solveeit Logo

Question

Question: The solution of the differential equation $\frac{dy}{dx}=sec(x+y)$ is...

The solution of the differential equation dydx=sec(x+y)\frac{dy}{dx}=sec(x+y) is

A

ytanx+y2=cy - tan\frac{x+y}{2} = c

B

y+tanx+y2=cy + tan\frac{x+y}{2} = c

C

y+2tanx+y2=cy + 2 tan\frac{x+y}{2} = c

D

None of these

Answer

A ytanx+y2=cy - tan\frac{x+y}{2} = c

Explanation

Solution

The given differential equation is dydx=sec(x+y)\frac{dy}{dx}=\sec(x+y).

This is a differential equation of the form dydx=f(ax+by+c)\frac{dy}{dx} = f(ax+by+c). Here, a=1,b=1,c=0a=1, b=1, c=0. We use the substitution method. Let v=x+yv = x+y. Differentiating both sides with respect to xx: dvdx=ddx(x)+ddx(y)\frac{dv}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}(y) dvdx=1+dydx\frac{dv}{dx} = 1 + \frac{dy}{dx} From this, we can express dydx\frac{dy}{dx} as: dydx=dvdx1\frac{dy}{dx} = \frac{dv}{dx} - 1

Substitute this into the original differential equation: dvdx1=sec(v)\frac{dv}{dx} - 1 = \sec(v)

Now, separate the variables: dvdx=1+sec(v)\frac{dv}{dx} = 1 + \sec(v) dv1+sec(v)=dx\frac{dv}{1 + \sec(v)} = dx

To integrate the left side, simplify the integrand: 11+sec(v)=11+1cos(v)=1cos(v)+1cos(v)=cos(v)cos(v)+1\frac{1}{1 + \sec(v)} = \frac{1}{1 + \frac{1}{\cos(v)}} = \frac{1}{\frac{\cos(v) + 1}{\cos(v)}} = \frac{\cos(v)}{\cos(v) + 1}

We use the half-angle identities for cos(v)\cos(v): cos(v)=2cos2(v2)1\cos(v) = 2\cos^2\left(\frac{v}{2}\right) - 1 So, cos(v)+1=2cos2(v2)\cos(v) + 1 = 2\cos^2\left(\frac{v}{2}\right)

Substitute these into the integrand: 2cos2(v2)12cos2(v2)=2cos2(v2)2cos2(v2)12sec2(v2)\frac{2\cos^2\left(\frac{v}{2}\right) - 1}{2\cos^2\left(\frac{v}{2}\right)} = \frac{2\cos^2\left(\frac{v}{2}\right)}{2\cos^2\left(\frac{v}{2}\right)} - \frac{1}{2\sec^2\left(\frac{v}{2}\right)} =112sec2(v2)= 1 - \frac{1}{2}\sec^2\left(\frac{v}{2}\right)

Now, integrate both sides of the separated equation: (112sec2(v2))dv=dx\int \left(1 - \frac{1}{2}\sec^2\left(\frac{v}{2}\right)\right) dv = \int dx

Integrating term by term: 1dv=v\int 1 \, dv = v For 12sec2(v2)dv\int \frac{1}{2}\sec^2\left(\frac{v}{2}\right) dv: Let u=v2u = \frac{v}{2}, then du=12dvdu = \frac{1}{2} dv, which means dv=2dudv = 2du. So, 12sec2(u)(2du)=sec2(u)du=tan(u)=tan(v2)\frac{1}{2} \int \sec^2(u) (2du) = \int \sec^2(u) du = \tan(u) = \tan\left(\frac{v}{2}\right).

Thus, the integral of the left side is: vtan(v2)v - \tan\left(\frac{v}{2}\right)

The integral of the right side is: dx=x+C\int dx = x + C, where CC is the constant of integration.

Equating the results of the integration: vtan(v2)=x+Cv - \tan\left(\frac{v}{2}\right) = x + C

Finally, substitute back v=x+yv = x+y: (x+y)tan(x+y2)=x+C(x+y) - \tan\left(\frac{x+y}{2}\right) = x + C

Subtract xx from both sides: ytan(x+y2)=Cy - \tan\left(\frac{x+y}{2}\right) = C

Comparing this solution with the given options, it matches option A.

Explanation of the solution:

  1. Substitute v=x+yv = x+y to transform the differential equation into a separable form. This leads to dvdx1=sec(v)\frac{dv}{dx} - 1 = \sec(v).
  2. Rearrange to separate variables: dv1+sec(v)=dx\frac{dv}{1 + \sec(v)} = dx.
  3. Simplify the integrand 11+sec(v)\frac{1}{1 + \sec(v)} using trigonometric identities, specifically half-angle formulas for cosine: cos(v)1+cos(v)=2cos2(v/2)12cos2(v/2)=112sec2(v/2)\frac{\cos(v)}{1 + \cos(v)} = \frac{2\cos^2(v/2) - 1}{2\cos^2(v/2)} = 1 - \frac{1}{2}\sec^2(v/2).
  4. Integrate both sides: (112sec2(v/2))dv=dx\int (1 - \frac{1}{2}\sec^2(v/2)) dv = \int dx.
  5. Perform the integration: vtan(v/2)=x+Cv - \tan(v/2) = x + C.
  6. Substitute back v=x+yv = x+y to get the solution in terms of xx and yy: (x+y)tan(x+y2)=x+C(x+y) - \tan(\frac{x+y}{2}) = x + C.
  7. Simplify to obtain the final solution: ytan(x+y2)=Cy - \tan(\frac{x+y}{2}) = C.