Solveeit Logo

Question

Question: The solution of $\frac{dy}{dx} = \frac{e^x(\sin^2x + \sin2x)}{y(2\log y + 1)}$ is...

The solution of dydx=ex(sin2x+sin2x)y(2logy+1)\frac{dy}{dx} = \frac{e^x(\sin^2x + \sin2x)}{y(2\log y + 1)} is

A

y2(logy)exsin2x+c=0y^2(\log y) - e^x\sin^2x + c = 0

B

y2(logy)excos2x+c=0y^2(\log y) - e^x\cos^2x + c = 0

C

y2(logy)+excos2x+c=0y^2(\log y) + e^x\cos^2x + c = 0

D

None of these

Answer

A

Explanation

Solution

The given differential equation is: dydx=ex(sin2x+sin2x)y(2logy+1)\frac{dy}{dx} = \frac{e^x(\sin^2x + \sin2x)}{y(2\log y + 1)}

This is a separable differential equation. We can rearrange the terms to separate variables xx and yy: y(2logy+1)dy=ex(sin2x+sin2x)dxy(2\log y + 1) dy = e^x(\sin^2x + \sin2x) dx

Now, integrate both sides: y(2logy+1)dy=ex(sin2x+sin2x)dx\int y(2\log y + 1) dy = \int e^x(\sin^2x + \sin2x) dx

Let's evaluate the Left Hand Side (LHS) integral: LHS=(2ylogy+y)dy\text{LHS} = \int (2y\log y + y) dy We can split this into two integrals: 2ylogydy+ydy\int 2y\log y dy + \int y dy.

For the integral 2ylogydy\int 2y\log y dy, we use integration by parts, udv=uvvdu\int u dv = uv - \int v du. Let u=logyu = \log y and dv=2ydydv = 2y dy. Then du=1ydydu = \frac{1}{y} dy and v=y2v = y^2. So, 2ylogydy=(logy)(y2)y2(1y)dy\int 2y\log y dy = (\log y)(y^2) - \int y^2 \left(\frac{1}{y}\right) dy =y2logyydy= y^2 \log y - \int y dy =y2logyy22= y^2 \log y - \frac{y^2}{2}

Now, substitute this back into the LHS integral: LHS=(y2logyy22)+y22+C1\text{LHS} = \left(y^2 \log y - \frac{y^2}{2}\right) + \frac{y^2}{2} + C_1 LHS=y2logy+C1\text{LHS} = y^2 \log y + C_1

Next, let's evaluate the Right Hand Side (RHS) integral: RHS=ex(sin2x+sin2x)dx\text{RHS} = \int e^x(\sin^2x + \sin2x) dx We know that sin2x=2sinxcosx\sin2x = 2\sin x \cos x. So the integral becomes: RHS=ex(sin2x+2sinxcosx)dx\text{RHS} = \int e^x(\sin^2x + 2\sin x \cos x) dx This integral is of the form ex(f(x)+f(x))dx\int e^x(f(x) + f'(x)) dx, which evaluates to exf(x)+Ce^x f(x) + C. Here, let f(x)=sin2xf(x) = \sin^2x. Then, f(x)=ddx(sin2x)=2sinxcosx=sin2xf'(x) = \frac{d}{dx}(\sin^2x) = 2\sin x \cdot \cos x = \sin2x. Thus, the integral fits the form. RHS=exsin2x+C2\text{RHS} = e^x \sin^2x + C_2

Equating the LHS and RHS results: y2logy+C1=exsin2x+C2y^2 \log y + C_1 = e^x \sin^2x + C_2 Rearranging the terms and combining the constants into a single constant C=C2C1C = C_2 - C_1: y2logyexsin2x+C=0y^2 \log y - e^x \sin^2x + C = 0

Comparing this result with the given options, the derived solution matches option A.