Question
Question: The solution of $\frac{dy}{dx} = \frac{e^x(\sin^2x + \sin2x)}{y(2\log y + 1)}$ is...
The solution of dxdy=y(2logy+1)ex(sin2x+sin2x) is

y2(logy)−exsin2x+c=0
y2(logy)−excos2x+c=0
y2(logy)+excos2x+c=0
None of these
A
Solution
The given differential equation is: dxdy=y(2logy+1)ex(sin2x+sin2x)
This is a separable differential equation. We can rearrange the terms to separate variables x and y: y(2logy+1)dy=ex(sin2x+sin2x)dx
Now, integrate both sides: ∫y(2logy+1)dy=∫ex(sin2x+sin2x)dx
Let's evaluate the Left Hand Side (LHS) integral: LHS=∫(2ylogy+y)dy We can split this into two integrals: ∫2ylogydy+∫ydy.
For the integral ∫2ylogydy, we use integration by parts, ∫udv=uv−∫vdu. Let u=logy and dv=2ydy. Then du=y1dy and v=y2. So, ∫2ylogydy=(logy)(y2)−∫y2(y1)dy =y2logy−∫ydy =y2logy−2y2
Now, substitute this back into the LHS integral: LHS=(y2logy−2y2)+2y2+C1 LHS=y2logy+C1
Next, let's evaluate the Right Hand Side (RHS) integral: RHS=∫ex(sin2x+sin2x)dx We know that sin2x=2sinxcosx. So the integral becomes: RHS=∫ex(sin2x+2sinxcosx)dx This integral is of the form ∫ex(f(x)+f′(x))dx, which evaluates to exf(x)+C. Here, let f(x)=sin2x. Then, f′(x)=dxd(sin2x)=2sinx⋅cosx=sin2x. Thus, the integral fits the form. RHS=exsin2x+C2
Equating the LHS and RHS results: y2logy+C1=exsin2x+C2 Rearranging the terms and combining the constants into a single constant C=C2−C1: y2logy−exsin2x+C=0
Comparing this result with the given options, the derived solution matches option A.