Solveeit Logo

Question

Question: The operation $R_1 \rightarrow R_1 + R_2$ is applied on matrix $\begin{bmatrix} 2 & 3 \\ 6 & 4 \end{...

The operation R1R1+R2R_1 \rightarrow R_1 + R_2 is applied on matrix [2364]\begin{bmatrix} 2 & 3 \\ 6 & 4 \end{bmatrix}, then which of the following will be resulting matrix?

A

[8764]\begin{bmatrix} 8 & 7 \\ 6 & -4 \end{bmatrix}

B

[8764]\begin{bmatrix} 8 & 7 \\ 6 & 4 \end{bmatrix}

C

[8765]\begin{bmatrix} 8 & 7 \\ 6 & 5 \end{bmatrix}

D

[8762]\begin{bmatrix} 8 & 7 \\ 6 & 2 \end{bmatrix}

Answer

[8764]\begin{bmatrix} 8 & 7 \\ 6 & 4 \end{bmatrix}

Explanation

Solution

The elementary row operation R1R1+R2R_1 \rightarrow R_1 + R_2 means we add the second row to the first row.

Given matrix: [2364]\begin{bmatrix} 2 & 3 \\ 6 & 4 \end{bmatrix}

Applying the operation:

New first row, first element: 2+6=82 + 6 = 8 New first row, second element: 3+4=73 + 4 = 7

The second row remains unchanged.

Resulting matrix: [8764]\begin{bmatrix} 8 & 7 \\ 6 & 4 \end{bmatrix}