Question
Question: The maximum value of the function $y = x(x-1)^2, 0 \le x \le 2$ is...
The maximum value of the function y=x(x−1)2,0≤x≤2 is

0
274
-4
none
D
Solution
To find the maximum value of the function y=x(x−1)2 in the interval 0≤x≤2, we follow these steps:
-
Expand the function: y=x(x2−2x+1)=x3−2x2+x
-
Find the first derivative of the function: f′(x)=dxd(x3−2x2+x)=3x2−4x+1
-
Find the critical points by setting the first derivative to zero: 3x2−4x+1=0 This is a quadratic equation. We can factor it: 3x2−3x−x+1=0 3x(x−1)−1(x−1)=0 (3x−1)(x−1)=0 This gives two critical points: 3x−1=0⟹x=31 x−1=0⟹x=1
-
Check if the critical points lie within the given interval 0≤x≤2: Both x=31 and x=1 are within the interval [0,2].
-
Evaluate the function at the critical points and the endpoints of the interval: The endpoints of the interval are x=0 and x=2.
-
At x=0 (endpoint): f(0)=0(0−1)2=0(1)=0
-
At x=31 (critical point): f(31)=31(31−1)2=31(−32)2=31(94)=274
-
At x=1 (critical point): f(1)=1(1−1)2=1(0)2=0
-
At x=2 (endpoint): f(2)=2(2−1)2=2(1)2=2(1)=2
-
-
Compare all the evaluated values to find the maximum: The values are 0,274,0,2.
Comparing 0,274,2, the maximum value is 2.
Since 2 is not among options A, B, or C, the correct option is D.