Solveeit Logo

Question

Question: The maximum value of the function $y = x(x-1)^2, 0 \le x \le 2$ is...

The maximum value of the function y=x(x1)2,0x2y = x(x-1)^2, 0 \le x \le 2 is

A

0

B

427\frac{4}{27}

C

-4

D

none

Answer

D

Explanation

Solution

To find the maximum value of the function y=x(x1)2y = x(x-1)^2 in the interval 0x20 \le x \le 2, we follow these steps:

  1. Expand the function: y=x(x22x+1)=x32x2+xy = x(x^2 - 2x + 1) = x^3 - 2x^2 + x

  2. Find the first derivative of the function: f(x)=ddx(x32x2+x)=3x24x+1f'(x) = \frac{d}{dx}(x^3 - 2x^2 + x) = 3x^2 - 4x + 1

  3. Find the critical points by setting the first derivative to zero: 3x24x+1=03x^2 - 4x + 1 = 0 This is a quadratic equation. We can factor it: 3x23xx+1=03x^2 - 3x - x + 1 = 0 3x(x1)1(x1)=03x(x - 1) - 1(x - 1) = 0 (3x1)(x1)=0(3x - 1)(x - 1) = 0 This gives two critical points: 3x1=0    x=133x - 1 = 0 \implies x = \frac{1}{3} x1=0    x=1x - 1 = 0 \implies x = 1

  4. Check if the critical points lie within the given interval 0x20 \le x \le 2: Both x=13x = \frac{1}{3} and x=1x = 1 are within the interval [0,2][0, 2].

  5. Evaluate the function at the critical points and the endpoints of the interval: The endpoints of the interval are x=0x = 0 and x=2x = 2.

    • At x=0x = 0 (endpoint): f(0)=0(01)2=0(1)=0f(0) = 0(0 - 1)^2 = 0(1) = 0

    • At x=13x = \frac{1}{3} (critical point): f(13)=13(131)2=13(23)2=13(49)=427f\left(\frac{1}{3}\right) = \frac{1}{3}\left(\frac{1}{3} - 1\right)^2 = \frac{1}{3}\left(-\frac{2}{3}\right)^2 = \frac{1}{3}\left(\frac{4}{9}\right) = \frac{4}{27}

    • At x=1x = 1 (critical point): f(1)=1(11)2=1(0)2=0f(1) = 1(1 - 1)^2 = 1(0)^2 = 0

    • At x=2x = 2 (endpoint): f(2)=2(21)2=2(1)2=2(1)=2f(2) = 2(2 - 1)^2 = 2(1)^2 = 2(1) = 2

  6. Compare all the evaluated values to find the maximum: The values are 0,427,0,20, \frac{4}{27}, 0, 2.

    Comparing 0,427,20, \frac{4}{27}, 2, the maximum value is 22.

Since 22 is not among options A, B, or C, the correct option is D.