Solveeit Logo

Question

Question: Solve the following differential equations. $\ln \frac{dy}{dx} = ax + by$...

Solve the following differential equations.

lndydx=ax+by\ln \frac{dy}{dx} = ax + by

A

aeby+beax=Cae^{-by} + be^{ax} = C

B

aeby+beax=Cae^{by} + be^{-ax} = C

C

bebyaeax=Cbe^{by} - ae^{ax} = C

D

None of these

Answer

A aeby+beax=Cae^{-by} + be^{ax} = C

Explanation

Solution

The given differential equation is: lndydx=ax+by\ln \frac{dy}{dx} = ax + by

Step 1: Convert the logarithmic equation into an exponential form. To remove the natural logarithm, we exponentiate both sides with base ee: elndydx=eax+bye^{\ln \frac{dy}{dx}} = e^{ax + by} dydx=eax+by\frac{dy}{dx} = e^{ax + by}

Step 2: Separate the variables. Using the property of exponents em+n=emene^{m+n} = e^m \cdot e^n, we can write: dydx=eaxeby\frac{dy}{dx} = e^{ax} \cdot e^{by}

Now, separate the variables xx and yy by moving all terms involving yy to one side with dydy and all terms involving xx to the other side with dxdx: dyeby=eaxdx\frac{dy}{e^{by}} = e^{ax} dx We can rewrite 1eby\frac{1}{e^{by}} as ebye^{-by}: ebydy=eaxdxe^{-by} dy = e^{ax} dx

Step 3: Integrate both sides. Now, integrate both sides of the equation: ebydy=eaxdx\int e^{-by} dy = \int e^{ax} dx

For the left side, ebydy\int e^{-by} dy: The integral of ekxe^{kx} is 1kekx\frac{1}{k}e^{kx}. Here k=bk = -b. ebydy=ebyb+C1=1beby+C1\int e^{-by} dy = \frac{e^{-by}}{-b} + C_1 = -\frac{1}{b} e^{-by} + C_1

For the right side, eaxdx\int e^{ax} dx: Here k=ak = a. eaxdx=eaxa+C2\int e^{ax} dx = \frac{e^{ax}}{a} + C_2

Equating the results of the integration: 1beby=1aeax+C-\frac{1}{b} e^{-by} = \frac{1}{a} e^{ax} + C' (where CC' is the combined constant of integration, C=C2C1C' = C_2 - C_1)

Step 4: Rearrange the terms to match the given options. To eliminate the denominators aa and bb, multiply the entire equation by abab: ab(1beby)=ab(1aeax+C)ab \left(-\frac{1}{b} e^{-by}\right) = ab \left(\frac{1}{a} e^{ax} + C'\right) aeby=beax+abC-a e^{-by} = b e^{ax} + ab C'

Now, rearrange the terms to match the format of the options. Move all terms involving eaxe^{ax} and ebye^{-by} to one side: 0=beax+aeby+abC0 = b e^{ax} + a e^{-by} + ab C'

Let C=abCC = -ab C'. Since CC' is an arbitrary constant, CC is also an arbitrary constant. So, the solution becomes: beax+aeby=Cb e^{ax} + a e^{-by} = C

This matches option A.