Solveeit Logo

Question

Question: Solution of the differential equation $xdx + ydy = x(xdy - ydx)$ is...

Solution of the differential equation xdx+ydy=x(xdyydx)xdx + ydy = x(xdy - ydx) is

A

y+1x2+y2+C=0\frac{y+1}{\sqrt{x^2 + y^2}} + C = 0

B

y1x2+y2+C=0\frac{y-1}{\sqrt{x^2 + y^2}} + C = 0

C

y+1x2y2+C=0\frac{y+1}{\sqrt{x^2 - y^2}} + C = 0

D

y1x2y2+C=0\frac{y-1}{\sqrt{x^2 - y^2}} + C = 0

Answer

y+1x2+y2+C=0\frac{y+1}{\sqrt{x^2 + y^2}} + C = 0

Explanation

Solution

The given differential equation is: xdx+ydy=x(xdyydx)xdx + ydy = x(xdy - ydx)

This equation can be simplified using polar coordinates. Let x=rcosθx = r\cos\theta and y=rsinθy = r\sin\theta. From these substitutions, we have the following standard differential relations:

  1. x2+y2=r2x^2 + y^2 = r^2 Differentiating both sides: 2xdx+2ydy=2rdr    xdx+ydy=rdr2xdx + 2ydy = 2rdr \implies xdx + ydy = rdr.
  2. The term xdyydxxdy - ydx can be related to dθd\theta. xdyydx=(rcosθ)(drsinθ+rcosθdθ)(rsinθ)(drcosθrsinθdθ)xdy - ydx = (r\cos\theta)(dr\sin\theta + r\cos\theta d\theta) - (r\sin\theta)(dr\cos\theta - r\sin\theta d\theta) =rdrsinθcosθ+r2cos2θdθrdrsinθcosθ+r2sin2θdθ= rdr\sin\theta\cos\theta + r^2\cos^2\theta d\theta - rdr\sin\theta\cos\theta + r^2\sin^2\theta d\theta =r2(cos2θ+sin2θ)dθ=r2dθ= r^2(\cos^2\theta + \sin^2\theta)d\theta = r^2d\theta.

Now, substitute these into the original differential equation: rdr=(rcosθ)(r2dθ)rdr = (r\cos\theta)(r^2d\theta) rdr=r3cosθdθrdr = r^3\cos\theta d\theta

Assuming r0r \neq 0, we can divide both sides by rr: dr=r2cosθdθdr = r^2\cos\theta d\theta

Now, separate the variables rr and θ\theta: drr2=cosθdθ\frac{dr}{r^2} = \cos\theta d\theta

Integrate both sides: drr2=cosθdθ\int \frac{dr}{r^2} = \int \cos\theta d\theta r2dr=cosθdθ\int r^{-2} dr = \int \cos\theta d\theta 1r=sinθ+K-\frac{1}{r} = \sin\theta + K (where KK is the constant of integration)

Rearrange the terms: 1r+sinθ=K\frac{1}{r} + \sin\theta = -K Let C=KC = -K (since KK is an arbitrary constant, K-K is also an arbitrary constant). 1r+sinθ=C\frac{1}{r} + \sin\theta = C

Finally, substitute back the Cartesian coordinates: r=x2+y2r = \sqrt{x^2+y^2} sinθ=yr=yx2+y2\sin\theta = \frac{y}{r} = \frac{y}{\sqrt{x^2+y^2}}

So the solution becomes: 1x2+y2+yx2+y2=C\frac{1}{\sqrt{x^2+y^2}} + \frac{y}{\sqrt{x^2+y^2}} = C 1+yx2+y2=C\frac{1+y}{\sqrt{x^2+y^2}} = C

This can be written as y+1x2+y2C=0\frac{y+1}{\sqrt{x^2+y^2}} - C = 0. If we redefine the constant as C-C, it matches option A. y+1x2+y2+C=0\frac{y+1}{\sqrt{x^2+y^2}} + C' = 0 (where C=CC' = -C).

The given differential equation xdx+ydy=x(xdyydx)xdx + ydy = x(xdy - ydx) is most efficiently solved by transforming it into polar coordinates. By substituting x=rcosθx = r\cos\theta, y=rsinθy = r\sin\theta, we use the identities xdx+ydy=rdrxdx + ydy = rdr and xdyydx=r2dθxdy - ydx = r^2d\theta. The equation simplifies to rdr=rcosθ(r2dθ)rdr = r\cos\theta (r^2d\theta), which further reduces to drr2=cosθdθ\frac{dr}{r^2} = \cos\theta d\theta. Integrating both sides yields 1r=sinθ+C-\frac{1}{r} = \sin\theta + C'. Substituting back r=x2+y2r=\sqrt{x^2+y^2} and sinθ=yx2+y2\sin\theta = \frac{y}{\sqrt{x^2+y^2}} gives 1+yx2+y2=C\frac{1+y}{\sqrt{x^2+y^2}} = C, which matches option A.