Solveeit Logo

Question

Question: Shown are the initial voltages on each capacitor. Find out the final charges if A is joined to F, B ...

Shown are the initial voltages on each capacitor. Find out the final charges if A is joined to F, B to C and D to E.

A

10.5 μC\mu C

B

12.5 μC\mu C

C

14.5 μC\mu C

D

None of these

Answer

12.5 μC\mu C

Explanation

Solution

The initial charges on the capacitor plates are:

Q1A=+C1V1=+1μF×30V=+30μCQ_{1A} = +C_1 V_1 = +1 \mu F \times 30 V = +30 \mu C

Q1B=C1V1=1μF×30V=30μCQ_{1B} = -C_1 V_1 = -1 \mu F \times 30 V = -30 \mu C

Q2C=+C2V2=+2μF×10V=+20μCQ_{2C} = +C_2 V_2 = +2 \mu F \times 10 V = +20 \mu C

Q2D=C2V2=2μF×10V=20μCQ_{2D} = -C_2 V_2 = -2 \mu F \times 10 V = -20 \mu C

Q3E=+C3V3=+2μF×15V=+30μCQ_{3E} = +C_3 V_3 = +2 \mu F \times 15 V = +30 \mu C

Q3F=C3V3=2μF×15V=30μCQ_{3F} = -C_3 V_3 = -2 \mu F \times 15 V = -30 \mu C

When A is joined to F, B to C, and D to E, we form three connected nodes: (A, F), (B, C), and (D, E). Let their final potentials be VAFV_{AF}, VBCV_{BC}, and VDEV_{DE}. The final voltages across the capacitors are:

V1f=VAVB=VAFVBCV_{1f} = V_A - V_B = V_{AF} - V_{BC}

V2f=VCVD=VBCVDEV_{2f} = V_C - V_D = V_{BC} - V_{DE}

V3f=VEVF=VDEVAFV_{3f} = V_E - V_F = V_{DE} - V_{AF}

The final charges on the plates are:

Q1f=C1V1f=C1(VAFVBC)Q_{1f} = C_1 V_{1f} = C_1 (V_{AF} - V_{BC}) (charge on plate A)

Q1f=C1V1f=C1(VAFVBC)-Q_{1f} = -C_1 V_{1f} = -C_1 (V_{AF} - V_{BC}) (charge on plate B)

Q2f=C2V2f=C2(VBCVDE)Q_{2f} = C_2 V_{2f} = C_2 (V_{BC} - V_{DE}) (charge on plate C)

Q2f=C2V2f=C2(VBCVDE)-Q_{2f} = -C_2 V_{2f} = -C_2 (V_{BC} - V_{DE}) (charge on plate D)

Q3f=C3V3f=C3(VDEVAF)Q_{3f} = C_3 V_{3f} = C_3 (V_{DE} - V_{AF}) (charge on plate E)

Q3f=C3V3f=C3(VDEVAF)-Q_{3f} = -C_3 V_{3f} = -C_3 (V_{DE} - V_{AF}) (charge on plate F)

By conservation of charge on each connected node:

Node (B, C): Initial charge Q1B+Q2C=30+20=10μCQ_{1B} + Q_{2C} = -30 + 20 = -10 \mu C. Final charge Q1f+Q2f=C1(VAFVBC)+C2(VBCVDE)-Q_{1f} + Q_{2f} = -C_1(V_{AF} - V_{BC}) + C_2(V_{BC} - V_{DE}).

1(VAFVBC)+2(VBCVDE)=10-1(V_{AF} - V_{BC}) + 2(V_{BC} - V_{DE}) = -10

VAF+VBC+2VBC2VDE=10    VAF+3VBC2VDE=10-V_{AF} + V_{BC} + 2V_{BC} - 2V_{DE} = -10 \implies -V_{AF} + 3V_{BC} - 2V_{DE} = -10 (1)

Node (D, E): Initial charge Q2D+Q3E=20+30=10μCQ_{2D} + Q_{3E} = -20 + 30 = 10 \mu C. Final charge Q2f+Q3f=C2(VBCVDE)+C3(VDEVAF)-Q_{2f} + Q_{3f} = -C_2(V_{BC} - V_{DE}) + C_3(V_{DE} - V_{AF}).

2(VBCVDE)+2(VDEVAF)=10-2(V_{BC} - V_{DE}) + 2(V_{DE} - V_{AF}) = 10

2VBC+2VDE+2VDE2VAF=10    2VAF2VBC+4VDE=10    VAFVBC+2VDE=5-2V_{BC} + 2V_{DE} + 2V_{DE} - 2V_{AF} = 10 \implies -2V_{AF} - 2V_{BC} + 4V_{DE} = 10 \implies -V_{AF} - V_{BC} + 2V_{DE} = 5 (2)

Node (A, F): Initial charge Q1A+Q3F=30+(30)=0μCQ_{1A} + Q_{3F} = 30 + (-30) = 0 \mu C. Final charge Q1fQ3f=C1(VAFVBC)C3(VDEVAF)Q_{1f} - Q_{3f} = C_1(V_{AF} - V_{BC}) - C_3(V_{DE} - V_{AF}).

1(VAFVBC)2(VDEVAF)=01(V_{AF} - V_{BC}) - 2(V_{DE} - V_{AF}) = 0

VAFVBC2VDE+2VAF=0    3VAFVBC2VDE=0V_{AF} - V_{BC} - 2V_{DE} + 2V_{AF} = 0 \implies 3V_{AF} - V_{BC} - 2V_{DE} = 0 (3)

We have the system of equations:

(1) VAF+3VBC2VDE=10-V_{AF} + 3V_{BC} - 2V_{DE} = -10

(2) VAFVBC+2VDE=5-V_{AF} - V_{BC} + 2V_{DE} = 5

(3) 3VAFVBC2VDE=03V_{AF} - V_{BC} - 2V_{DE} = 0

Adding (1) and (2): (VAF+3VBC2VDE)+(VAFVBC+2VDE)=10+5    2VAF+2VBC=5    2VAF2VBC=5(-V_{AF} + 3V_{BC} - 2V_{DE}) + (-V_{AF} - V_{BC} + 2V_{DE}) = -10 + 5 \implies -2V_{AF} + 2V_{BC} = -5 \implies 2V_{AF} - 2V_{BC} = 5 (4) Adding (2) and (3): (VAFVBC+2VDE)+(3VAFVBC2VDE)=5+0    2VAF2VBC=5(-V_{AF} - V_{BC} + 2V_{DE}) + (3V_{AF} - V_{BC} - 2V_{DE}) = 5 + 0 \implies 2V_{AF} - 2V_{BC} = 5 (5) Equations (4) and (5) are identical, indicating linear dependence. This is expected because the sum of initial charges on all plates is 3030+2020+3030=030-30+20-20+30-30 = 0, and the sum of final charges is Q1fQ1f+Q2fQ2f+Q3fQ3f=0Q_{1f} - Q_{1f} + Q_{2f} - Q_{2f} + Q_{3f} - Q_{3f} = 0. Also, V1f+V2f+V3f=0V_{1f} + V_{2f} + V_{3f} = 0.

We can use the potential of one node as a reference, say VDE=0V_{DE} = 0. Then the equations become:

(1) VAF+3VBC=10-V_{AF} + 3V_{BC} = -10

(2) VAFVBC=5-V_{AF} - V_{BC} = 5

(3) 3VAFVBC=03V_{AF} - V_{BC} = 0

From (3), VBC=3VAFV_{BC} = 3V_{AF}. Substitute into (2): VAF3VAF=5    4VAF=5    VAF=5/4=1.25V-V_{AF} - 3V_{AF} = 5 \implies -4V_{AF} = 5 \implies V_{AF} = -5/4 = -1.25 V. Then VBC=3×(1.25)=3.75VV_{BC} = 3 \times (-1.25) = -3.75 V. Check with (1): (1.25)+3(3.75)=1.2511.25=10-(-1.25) + 3(-3.75) = 1.25 - 11.25 = -10. This is consistent. So, VAF=1.25VV_{AF} = -1.25 V, VBC=3.75VV_{BC} = -3.75 V, VDE=0VV_{DE} = 0 V.

The final voltages across the capacitors are:

V1f=VAFVBC=1.25(3.75)=1.25+3.75=2.5VV_{1f} = V_{AF} - V_{BC} = -1.25 - (-3.75) = -1.25 + 3.75 = 2.5 V.

V2f=VBCVDE=3.750=3.75VV_{2f} = V_{BC} - V_{DE} = -3.75 - 0 = -3.75 V.

V3f=VDEVAF=0(1.25)=1.25VV_{3f} = V_{DE} - V_{AF} = 0 - (-1.25) = 1.25 V.

The final charges on the positive plates are:

Q1f=C1V1f=1μF×2.5V=2.5μCQ_{1f} = C_1 V_{1f} = 1 \mu F \times 2.5 V = 2.5 \mu C.

Q2f=C2V2f=2μF×(3.75V)=7.5μCQ_{2f} = C_2 V_{2f} = 2 \mu F \times (-3.75 V) = -7.5 \mu C.

Q3f=C3V3f=2μF×1.25V=2.5μCQ_{3f} = C_3 V_{3f} = 2 \mu F \times 1.25 V = 2.5 \mu C.

The magnitudes of the final charges are Q1f=2.5μC|Q_{1f}| = 2.5 \mu C, Q2f=7.5μC|Q_{2f}| = 7.5 \mu C, Q3f=2.5μC|Q_{3f}| = 2.5 \mu C. The sum of the magnitudes is 2.5+7.5+2.5=12.5μC2.5 + 7.5 + 2.5 = 12.5 \mu C. Therefore, the final answer is the sum of magnitudes of final charges.