Solveeit Logo

Question

Question: Q: Prove that: \(\dfrac{{1 + \sin 2x + \cos 2x}}{{1 + \sin 2x - \cos 2x}} = \cot x\)...

Q: Prove that: 1+sin2x+cos2x1+sin2xcos2x=cotx\dfrac{{1 + \sin 2x + \cos 2x}}{{1 + \sin 2x - \cos 2x}} = \cot x

Explanation

Solution

Hint: Start with left hand side, use formulas 1+cos2x=2cos2x1 + \cos 2x = 2{\cos ^2}x, 1cos2x=2sin2x1 - \cos 2x = 2{\sin ^2}x and sin2x=2sinxcosx\sin 2x = 2\sin x\cos x and then simplify it further to bring it in the form of right hand side.

Complete step by step answer:
From the question,
LHS=1+sin2x+cos2x1+sin2xcos2x LHS=(1+cos2x)+sin2x(1cos2x)+sin2x  \Rightarrow LHS = \dfrac{{1 + \sin 2x + \cos 2x}}{{1 + \sin 2x - \cos 2x}} \\\ \Rightarrow LHS = \dfrac{{(1 + \cos 2x) + \sin 2x}}{{(1 - \cos 2x) + \sin 2x}} \\\
We know that 1+cos2x=2cos2x1 + \cos 2x = 2{\cos ^2}x, 1cos2x=2sin2x1 - \cos 2x = 2{\sin ^2}x and sin2x=2sinxcosx\sin 2x = 2\sin x\cos x. Using these formulas for above expression, we’ll get:
LHS=2cos2x+2sinxcosx2sin2x+2sinxcosx LHS=2cosx(cosx+sinx)2sinx(sinx+cosx) LHS=cosxsinx LHS=cotx=RHS  \Rightarrow LHS = \dfrac{{2{{\cos }^2}x + 2\sin x\cos x}}{{2{{\sin }^2}x + 2\sin x\cos x}} \\\ \Rightarrow LHS = \dfrac{{2\cos x(\cos x + \sin x)}}{{2\sin x(\sin x + \cos x)}} \\\ \Rightarrow LHS = \dfrac{{\cos x}}{{\sin x}} \\\ \Rightarrow LHS = \cot x = RHS \\\
This is the required proof.

Note: The formula for cos2x\cos 2x can be used in three different forms:
cos2x=2cos2x1 cos2x=12sin2x cos2x=cos2xsin2x  \Rightarrow \cos 2x = 2{\cos ^2}x - 1 \\\ \Rightarrow \cos 2x = 1 - 2{\sin ^2}x \\\ \Rightarrow \cos 2x = {\cos ^2}x - {\sin ^2}x \\\
We can use any of them as per the requirement of the question.