Question
Question: Q: Prove that: \(\dfrac{{1 + \sin 2x + \cos 2x}}{{1 + \sin 2x - \cos 2x}} = \cot x\)...
Q: Prove that: 1+sin2x−cos2x1+sin2x+cos2x=cotx
Solution
Hint: Start with left hand side, use formulas 1+cos2x=2cos2x, 1−cos2x=2sin2x and sin2x=2sinxcosx and then simplify it further to bring it in the form of right hand side.
Complete step by step answer:
From the question,
⇒LHS=1+sin2x−cos2x1+sin2x+cos2x ⇒LHS=(1−cos2x)+sin2x(1+cos2x)+sin2x
We know that 1+cos2x=2cos2x, 1−cos2x=2sin2x and sin2x=2sinxcosx. Using these formulas for above expression, we’ll get:
⇒LHS=2sin2x+2sinxcosx2cos2x+2sinxcosx ⇒LHS=2sinx(sinx+cosx)2cosx(cosx+sinx) ⇒LHS=sinxcosx ⇒LHS=cotx=RHS
This is the required proof.
Note: The formula for cos2x can be used in three different forms:
⇒cos2x=2cos2x−1 ⇒cos2x=1−2sin2x ⇒cos2x=cos2x−sin2x
We can use any of them as per the requirement of the question.