Solveeit Logo

Question

Question: Let $$ f(x) = \begin{cases} a + \frac{[tan(x)]}{x}, & x > 0 \\ 3, & x = 0 \\ b + [\frac{x-tanx}{x^3}...

Let

f(x)={a+[tan(x)]x,x>03,x=0b+[xtanxx3],x<0f(x) = \begin{cases} a + \frac{[tan(x)]}{x}, & x > 0 \\ 3, & x = 0 \\ b + [\frac{x-tanx}{x^3}], & x < 0 \end{cases}

If f(x) is continuous at x = 0, then find the value of r=0(ab)r\sum_{r=0}^{\infty} (\frac{a}{b})^r.

(Note : [k] denotes the largest integer less than or equal to k)

A

4

B

3

C

1

D

2

Answer

4

Explanation

Solution

For the function f(x)f(x) to be continuous at x=0x=0, the following condition must be met: limx0f(x)=limx0+f(x)=f(0)\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0) We are given f(0)=3f(0) = 3.

1. Evaluate the limit from the right (x0+x \to 0^+): For x>0x > 0, f(x)=a+[tan(x)]xf(x) = a + \frac{[tan(x)]}{x}. As x0+x \to 0^+, xx is a small positive number. For x(0,1)x \in (0, 1), the greatest integer function [x]=0[x] = 0. Thus, tan[x]=tan(0)=0\tan[x] = \tan(0) = 0. limx0+f(x)=limx0+(a+[tan(x)]x)=limx0+(a+0x)=a\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(a + \frac{[tan(x)]}{x}\right) = \lim_{x \to 0^+} \left(a + \frac{0}{x}\right) = a For continuity, a=f(0)=3a = f(0) = 3.

2. Evaluate the limit from the left (x0x \to 0^-): For x<0x < 0, f(x)=b+[xtanxx3]f(x) = b + \left[\frac{x-\tan x}{x^3}\right]. We need to evaluate the limit of the argument of the greatest integer function: limx0xtanxx3\lim_{x \to 0^-} \frac{x-\tan x}{x^3}. Using the Taylor series expansion of tanx\tan x around x=0x=0: tanx=x+x33+2x515+O(x7)\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + O(x^7) Substituting this into the expression: xtanx=x(x+x33+2x515+O(x7))=x332x515+O(x7)x - \tan x = x - \left(x + \frac{x^3}{3} + \frac{2x^5}{15} + O(x^7)\right) = -\frac{x^3}{3} - \frac{2x^5}{15} + O(x^7) Now, divide by x3x^3: xtanxx3=x332x515+O(x7)x3=132x215+O(x4)\frac{x - \tan x}{x^3} = \frac{-\frac{x^3}{3} - \frac{2x^5}{15} + O(x^7)}{x^3} = -\frac{1}{3} - \frac{2x^2}{15} + O(x^4) As x0x \to 0^-, x2x^2 is a small positive quantity. Therefore, 2x215-\frac{2x^2}{15} is a small negative quantity. This implies that xtanxx3\frac{x - \tan x}{x^3} approaches 13-\frac{1}{3} from values slightly less than 13-\frac{1}{3}. Let y=xtanxx3y = \frac{x - \tan x}{x^3}. As x0x \to 0^-, y13(small positive number)y \approx -\frac{1}{3} - (\text{small positive number}). For example, yy could be approximately 0.333330.00001=0.33334-0.33333 - 0.00001 = -0.33334. The greatest integer of such a number is: [xtanxx3]=[132x215+O(x4)]=1\left[\frac{x - \tan x}{x^3}\right] = \left[-\frac{1}{3} - \frac{2x^2}{15} + O(x^4)\right] = -1 So, the limit from the left is: limx0f(x)=limx0(b+[xtanxx3])=b+(1)=b1\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \left(b + \left[\frac{x-\tan x}{x^3}\right]\right) = b + (-1) = b-1 For continuity, b1=f(0)=3b-1 = f(0) = 3. This gives b=4b = 4.

3. Calculate the sum of the geometric series: We have found a=3a=3 and b=4b=4. We need to find the value of r=0(ab)r\sum_{r=0}^{\infty} (\frac{a}{b})^r. Substituting the values of aa and bb: r=0(34)r\sum_{r=0}^{\infty} \left(\frac{3}{4}\right)^r This is an infinite geometric series with the first term A=(34)0=1A = (\frac{3}{4})^0 = 1 and the common ratio R=34R = \frac{3}{4}. Since R=34<1|R| = |\frac{3}{4}| < 1, the series converges. The sum of an infinite geometric series is given by A1R\frac{A}{1-R}. Sum=1134=114=4\text{Sum} = \frac{1}{1 - \frac{3}{4}} = \frac{1}{\frac{1}{4}} = 4