Question
Question: Let f: $(0, \infty) \rightarrow R$ be a twice differentiable function. If for some $a \neq 0, \int_{...
Let f: (0,∞)→R be a twice differentiable function. If for some a=0,∫01f(λx)dλ=af(x)f(1), f(1)=1 and f(16)=81, then 16−f′(161) is equal to _______.
112
Solution
Solution Explanation:
-
Substitute λx = t (so t = λx ⇒ dλ = dt/x) in the given equation: ∫₀¹ f(λx)dλ = (1/x)∫₀ˣ f(t)dt = af(x).
Thus, (1/x)∫₀ˣ f(t)dt = af(x) ⟹ ∫₀ˣ f(t)dt = a x f(x). -
Differentiate both sides with respect to x: Left: d/dx[∫₀ˣ f(t)dt] = f(x).
Right: d/dx[a x f(x)] = a f(x) + a x f′(x).
So, f(x) = a f(x) + a x f′(x) ⟹ a x f′(x) = (1 – a) f(x). -
Rearranging gives: f′(x)/f(x) = (1 – a)/(a) ⋅ (1/x).
Integrate: ln f(x) = [(1 – a)/(a)] ln x + constant. Using f(1) = 1, constant = 0.
Thus, f(x) = x^((1 – a)/a). -
Use f(16) = 1/8: 16^((1 – a)/a) = 1/8
Write 16 = 2⁴ and 1/8 = 2^(–3):
(2⁴)^((1 – a)/a) = 2^(–3) ⟹ 2^(4(1 – a)/a) = 2^(–3).
Equate exponents: 4(1 – a)/a = –3 ⟹ 4 – 4a = –3a ⟹ a = 4. -
So, f(x) = x^((1 – 4)/4) = x^(–3/4).
Differentiate: f′(x) = (–3/4) x^(–7/4). -
Evaluate f′(1/16): f′(1/16) = (–3/4) (1/16)^(–7/4).
Since (1/16)^(–7/4) = 16^(7/4) = (16^(1/4))^7 = 2⁷ = 128,
Thus, f′(1/16) = (–3/4) × 128 = –96. -
Finally, compute: 16 – f′(1/16) = 16 – (–96) = 16 + 96 = 112.