Solveeit Logo

Question

Question: Let f: $(0, \infty) \rightarrow R$ be a twice differentiable function. If for some $a \neq 0, \int_{...

Let f: (0,)R(0, \infty) \rightarrow R be a twice differentiable function. If for some a0,01f(λx)dλ=af(x)f(1)a \neq 0, \int_{0}^{1} f(\lambda x) d \lambda = af(x)f(1), f(1)=1f(1) = 1 and f(16)=18f(16) = \frac{1}{8}, then 16f(116)16-f'(\frac{1}{16}) is equal to _______.

Answer

112

Explanation

Solution

Solution Explanation:

  1. Substitute λx = t (so t = λx ⇒ dλ = dt/x) in the given equation:   ∫₀¹ f(λx)dλ = (1/x)∫₀ˣ f(t)dt = af(x).
      Thus, (1/x)∫₀ˣ f(t)dt = af(x) ⟹ ∫₀ˣ f(t)dt = a x f(x).

  2. Differentiate both sides with respect to x:   Left: d/dx[∫₀ˣ f(t)dt] = f(x).
      Right: d/dx[a x f(x)] = a f(x) + a x f′(x).
      So, f(x) = a f(x) + a x f′(x) ⟹ a x f′(x) = (1 – a) f(x).

  3. Rearranging gives:   f′(x)/f(x) = (1 – a)/(a) ⋅ (1/x).
      Integrate: ln f(x) = [(1 – a)/(a)] ln x + constant.   Using f(1) = 1, constant = 0.
      Thus, f(x) = x^((1 – a)/a).

  4. Use f(16) = 1/8:   16^((1 – a)/a) = 1/8
      Write 16 = 2⁴ and 1/8 = 2^(–3):
      (2⁴)^((1 – a)/a) = 2^(–3) ⟹ 2^(4(1 – a)/a) = 2^(–3).
      Equate exponents: 4(1 – a)/a = –3 ⟹ 4 – 4a = –3a ⟹ a = 4.

  5. So, f(x) = x^((1 – 4)/4) = x^(–3/4).
      Differentiate: f′(x) = (–3/4) x^(–7/4).

  6. Evaluate f′(1/16):   f′(1/16) = (–3/4) (1/16)^(–7/4).
      Since (1/16)^(–7/4) = 16^(7/4) = (16^(1/4))^7 = 2⁷ = 128,
      Thus, f′(1/16) = (–3/4) × 128 = –96.

  7. Finally, compute:   16 – f′(1/16) = 16 – (–96) = 16 + 96 = 112.