Solveeit Logo

Question

Question: $\left(\frac{1}{y}\sin\frac{x}{y}-\frac{y}{x^2}\cos\frac{y}{x}+1\right)dx+\left(\frac{1}{x}\cos\frac...

(1ysinxyyx2cosyx+1)dx+(1xcosyxxy2sinxy+1y2)dy=0\left(\frac{1}{y}\sin\frac{x}{y}-\frac{y}{x^2}\cos\frac{y}{x}+1\right)dx+\left(\frac{1}{x}\cos\frac{y}{x}-\frac{x}{y^2}\sin\frac{x}{y}+\frac{1}{y^2}\right)dy=0

Answer

x+sinyxcosxy1y=Cx + \sin\frac{y}{x} - \cos\frac{x}{y} - \frac{1}{y} = C

Explanation

Solution

The given differential equation is exact because My=Nx\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}. The general solution is found by integrating MM with respect to xx and NN with respect to yy, and combining the results. The integrated form is F(x,y)=Mdx+Nremdy=CF(x, y) = \int M dx + \int N_{rem} dy = C, where NremN_{rem} are the terms in NN not present in yMdx\frac{\partial}{\partial y} \int M dx. In this case, F(x,y)=cosxy+sinyx+x1y=CF(x, y) = -\cos\frac{x}{y} + \sin\frac{y}{x} + x - \frac{1}{y} = C.