Solveeit Logo

Question

Question: L $\lim_{n \to \infty} \frac{1}{\sqrt{n^2-1}} + \frac{1}{\sqrt{n^2-4}} + \frac{1}{\sqrt{n^2-9}} + \d...

L limn1n21+1n24+1n29++12n1\lim_{n \to \infty} \frac{1}{\sqrt{n^2-1}} + \frac{1}{\sqrt{n^2-4}} + \frac{1}{\sqrt{n^2-9}} + \dots + \frac{1}{\sqrt{2n-1}}

Answer

π2\frac{\pi}{2}

Explanation

Solution

The given sum can be written as Sn=k=1n11n2k2S_n = \sum_{k=1}^{n-1} \frac{1}{\sqrt{n^2-k^2}}. We can rewrite the general term by factoring out n2n^2 from the square root: 1n2k2=1n2(1k2n2)=1n1(kn)2\frac{1}{\sqrt{n^2-k^2}} = \frac{1}{\sqrt{n^2\left(1 - \frac{k^2}{n^2}\right)}} = \frac{1}{n\sqrt{1 - \left(\frac{k}{n}\right)^2}} So, the sum becomes: Sn=k=1n11n11(kn)2S_n = \sum_{k=1}^{n-1} \frac{1}{n} \cdot \frac{1}{\sqrt{1 - \left(\frac{k}{n}\right)^2}} This is a Riemann sum for the function f(x)=11x2f(x) = \frac{1}{\sqrt{1-x^2}} over the interval [0,1][0, 1]. As nn \to \infty, the limit of this sum is the definite integral: L=limnSn=0111x2dxL = \lim_{n \to \infty} S_n = \int_0^1 \frac{1}{\sqrt{1-x^2}} dx The integral of 11x2\frac{1}{\sqrt{1-x^2}} is arcsin(x)\arcsin(x). Evaluating the definite integral: 0111x2dx=[arcsin(x)]01=arcsin(1)arcsin(0)=π20=π2\int_0^1 \frac{1}{\sqrt{1-x^2}} dx = [\arcsin(x)]_0^1 = \arcsin(1) - \arcsin(0) = \frac{\pi}{2} - 0 = \frac{\pi}{2} Therefore, the limit is π2\frac{\pi}{2}.