Solveeit Logo

Question

Question: $\int x \sin 3x \, dx$ is equal to _______....

xsin3xdx\int x \sin 3x \, dx is equal to _______.

A

13x+19sin3x+C\frac{1}{3}x + \frac{1}{9}\sin 3x + C

B

13xcos3x+19sin3x+C\frac{1}{3}x \cos 3x + \frac{1}{9}\sin 3x + C

C

13xcos3x+19sin3x+C-\frac{1}{3}x \cos 3x + \frac{1}{9}\sin 3x + C

D

xcos3xsin3x+Cx \cos 3x - \sin 3x + C

Answer

C

Explanation

Solution

To evaluate the integral xsin3xdx\int x \sin 3x \, dx, we use the method of integration by parts.

The formula for integration by parts is:

udv=uvvdu\int u \, dv = uv - \int v \, du

We need to choose uu and dvdv. According to the ILATE rule (Inverse, Logarithmic, Algebraic, Trigonometric, Exponential), we prioritize functions for uu in that order. Here, we have an algebraic function (xx) and a trigonometric function (sin3x\sin 3x). 'Algebraic' comes before 'Trigonometric' in ILATE. So, we choose:

u=xu = x dv=sin3xdxdv = \sin 3x \, dx

Now, we find dudu by differentiating uu, and vv by integrating dvdv:

  1. Differentiate uu:

du=ddx(x)dx=dxdu = \frac{d}{dx}(x) \, dx = dx

  1. Integrate dvdv:

v=sin3xdxv = \int \sin 3x \, dx

To integrate sin3x\sin 3x, we can use a substitution (let t=3xt = 3x, then dt=3dx    dx=13dtdt = 3 \, dx \implies dx = \frac{1}{3} dt).

v=sint(13)dt=13sintdt=13(cost)=13cos3xv = \int \sin t \left(\frac{1}{3}\right) dt = \frac{1}{3} \int \sin t \, dt = \frac{1}{3} (-\cos t) = -\frac{1}{3} \cos 3x

Now, substitute uu, vv, and dudu into the integration by parts formula:

xsin3xdx=(x)(13cos3x)(13cos3x)dx\int x \sin 3x \, dx = (x)\left(-\frac{1}{3} \cos 3x\right) - \int \left(-\frac{1}{3} \cos 3x\right) \, dx xsin3xdx=13xcos3x+13cos3xdx\int x \sin 3x \, dx = -\frac{1}{3} x \cos 3x + \frac{1}{3} \int \cos 3x \, dx

Next, we need to evaluate the remaining integral cos3xdx\int \cos 3x \, dx:

Similar to the previous integration, let t=3xt = 3x, then dt=3dx    dx=13dtdt = 3 \, dx \implies dx = \frac{1}{3} dt.

cos3xdx=cost(13)dt=13costdt=13sint=13sin3x\int \cos 3x \, dx = \int \cos t \left(\frac{1}{3}\right) dt = \frac{1}{3} \int \cos t \, dt = \frac{1}{3} \sin t = \frac{1}{3} \sin 3x

Substitute this back into our expression:

xsin3xdx=13xcos3x+13(13sin3x)+C\int x \sin 3x \, dx = -\frac{1}{3} x \cos 3x + \frac{1}{3} \left(\frac{1}{3} \sin 3x\right) + C xsin3xdx=13xcos3x+19sin3x+C\int x \sin 3x \, dx = -\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x + C

Therefore, the final answer is 13xcos3x+19sin3x+C-\frac{1}{3} x \cos 3x + \frac{1}{9} \sin 3x + C.