Solveeit Logo

Question

Question: In following system we have a point mass of 5 kg, semi disc of 3 kg, semi ring of 2 kg and a uniform...

In following system we have a point mass of 5 kg, semi disc of 3 kg, semi ring of 2 kg and a uniform rod of length 4 m and mass 4 kg. Find location of COM (R = 2 m).

Answer

The location of the Center of Mass (COM) is (47,57)(\frac{4}{7}, \frac{5}{7}) meters.

Explanation

Solution

  1. Point mass (5 kg): COM at (0, 2) m.
  2. Semi-disc (3 kg, R=2m, upper half): COM at (0, 4R3π\frac{4R}{3\pi}) = (0, 83π\frac{8}{3\pi}) m.
  3. Semi-ring (2 kg, R=2m, lower half): COM at (0, 2Rπ-\frac{2R}{\pi}) = (0, 4π-\frac{4}{\pi}) m.
  4. Uniform rod (4 kg, L=4m): COM at (L2\frac{L}{2}, 0) = (2, 0) m.

Total mass M=5+3+2+4=14M = 5 + 3 + 2 + 4 = 14 kg.

XCOM=5(0)+3(0)+2(0)+4(2)14=814=47X_{COM} = \frac{5(0) + 3(0) + 2(0) + 4(2)}{14} = \frac{8}{14} = \frac{4}{7} m. YCOM=5(2)+3(83π)+2(4π)+4(0)14=10+8π8π14=1014=57Y_{COM} = \frac{5(2) + 3(\frac{8}{3\pi}) + 2(-\frac{4}{\pi}) + 4(0)}{14} = \frac{10 + \frac{8}{\pi} - \frac{8}{\pi}}{14} = \frac{10}{14} = \frac{5}{7} m.