Solveeit Logo

Question

Question: If $x_{n+1} = (3 + \frac{2}{n} + \frac{1}{n^2} + \frac{\ln n}{n^3})x_n$ for all $n \in N$ and $x_1 =...

If xn+1=(3+2n+1n2+lnnn3)xnx_{n+1} = (3 + \frac{2}{n} + \frac{1}{n^2} + \frac{\ln n}{n^3})x_n for all nNn \in N and x1=4x_1 = 4

Evaluate limn(xn)1n\lim_{n \to \infty} (x_n)^{\frac{1}{n}}

Answer

3

Explanation

Solution

We are given the recurrence relation xn+1=(3+2n+1n2+lnnn3)xnx_{n+1} = (3 + \frac{2}{n} + \frac{1}{n^2} + \frac{\ln n}{n^3})x_n and x1=4x_1 = 4. We need to find limn(xn)1n\lim_{n \to \infty} (x_n)^{\frac{1}{n}}.

A key theorem states that if limnxn+1xn=L\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = L, then limn(xn)1n=L\lim_{n \to \infty} (x_n)^{\frac{1}{n}} = L, provided xn>0x_n > 0 for all nn.

First, we find the limit of the ratio xn+1xn\frac{x_{n+1}}{x_n}: xn+1xn=3+2n+1n2+lnnn3\frac{x_{n+1}}{x_n} = 3 + \frac{2}{n} + \frac{1}{n^2} + \frac{\ln n}{n^3}

Now, we evaluate the limit of this ratio as nn \to \infty: limnxn+1xn=limn(3+2n+1n2+lnnn3)\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \left(3 + \frac{2}{n} + \frac{1}{n^2} + \frac{\ln n}{n^3}\right) We evaluate each term separately: limn3=3\lim_{n \to \infty} 3 = 3 limn2n=0\lim_{n \to \infty} \frac{2}{n} = 0 limn1n2=0\lim_{n \to \infty} \frac{1}{n^2} = 0 For the term limnlnnn3\lim_{n \to \infty} \frac{\ln n}{n^3}, we use L'Hopital's Rule as it is of the indeterminate form \frac{\infty}{\infty}: limnlnnn3=limnddn(lnn)ddn(n3)=limn1/n3n2=limn13n3=0\lim_{n \to \infty} \frac{\ln n}{n^3} = \lim_{n \to \infty} \frac{\frac{d}{dn}(\ln n)}{\frac{d}{dn}(n^3)} = \lim_{n \to \infty} \frac{1/n}{3n^2} = \lim_{n \to \infty} \frac{1}{3n^3} = 0 Combining these limits, we get: limnxn+1xn=3+0+0+0=3\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 3 + 0 + 0 + 0 = 3 Since x1=4>0x_1 = 4 > 0, and the factor (3+2n+1n2+lnnn3)(3 + \frac{2}{n} + \frac{1}{n^2} + \frac{\ln n}{n^3}) is positive for all nNn \in N (as n1n \ge 1, 3+2n+1n2>03 + \frac{2}{n} + \frac{1}{n^2} > 0, and lnnn30\frac{\ln n}{n^3} \ge 0), it follows that xn>0x_n > 0 for all nn. Therefore, applying the theorem: limn(xn)1n=limnxn+1xn=3\lim_{n \to \infty} (x_n)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = 3