Question
Question: If $x=1+3^{1/3}+9^{1/3}$ then value of $x^3-3x^2-6x$ is equal to...
If x=1+31/3+91/3 then value of x3−3x2−6x is equal to

6
4
13
15
4
Solution
Given the equation x=1+31/3+91/3. We can rewrite 91/3 as (32)1/3=32/3. So, the equation is x=1+31/3+32/3. Rearrange the equation to isolate the terms with fractional exponents: x−1=31/3+32/3.
Cube both sides of this equation: (x−1)3=(31/3+32/3)3.
Expand the left side using the formula (a−b)3=a3−3a2b+3ab2−b3: (x−1)3=x3−3x2(1)+3x(1)2−13=x3−3x2+3x−1.
Expand the right side using the formula (a+b)3=a3+b3+3ab(a+b). Let a=31/3 and b=32/3. (31/3+32/3)3=(31/3)3+(32/3)3+3(31/3)(32/3)(31/3+32/3). Calculate the terms: (31/3)3=3. (32/3)3=32=9. 31/3⋅32/3=31/3+2/3=33/3=31=3. From the rearranged equation, 31/3+32/3=x−1.
Substitute these values back into the expansion of the right side: (31/3+32/3)3=3+9+3(3)(x−1)=12+9(x−1)=12+9x−9=3+9x.
Now, equate the expanded left and right sides: x3−3x2+3x−1=3+9x.
We need to find the value of x3−3x2−6x. Rearrange the equation obtained to match this expression: x3−3x2+3x−9x−1=3⟹x3−3x2−6x−1=3. Add 1 to both sides: x3−3x2−6x=3+1⟹x3−3x2−6x=4.
The value of x3−3x2−6x is 4.