Question
Question: If \(P = \begin{bmatrix} 1 & \alpha & 3 \\[6pt] 1 & 3 & 3 \\[6pt] 2 & 4 & 4 \end{bmatrix}\) is the a...
If P=112α34334 is the adjoint of a 3×3 matrix A and ∣A∣=4, then α is equal to

A
4
B
11
C
5
D
0
Answer
11
Explanation
Solution
Key steps:
-
Property of adjoint:
det(\adj(A))=(detA)n−1for an n×n matrix.Here n=3 and detA=4, so
det(P)=det(\adj(A))=43−1=16. -
Compute det(P) in terms of α:
detP=13434−α1234+31234=0−α(4−6)+3(4−6)=2α−6. -
Set equal to 16:
2α−6=16⟹2α=22⟹α=11.