Solveeit Logo

Question

Question: If \(P = \begin{bmatrix} 1 & \alpha & 3 \\[6pt] 1 & 3 & 3 \\[6pt] 2 & 4 & 4 \end{bmatrix}\) is the a...

If P=[1α3133244]P = \begin{bmatrix} 1 & \alpha & 3 \\[6pt] 1 & 3 & 3 \\[6pt] 2 & 4 & 4 \end{bmatrix} is the adjoint of a 3×3 matrix AA and A=4\lvert A\rvert = 4, then α\alpha is equal to

A

4

B

11

C

5

D

0

Answer

11

Explanation

Solution

Key steps:

  1. Property of adjoint:

    det(\adj(A))  =  (detA)n1for an n×n matrix.\det\bigl(\adj(A)\bigr) \;=\;\bigl(\det A\bigr)^{n-1} \quad\text{for an }n\times n\text{ matrix.}

    Here n=3n=3 and detA=4\det A = 4, so

    det(P)  =  det(\adj(A))  =  431  =  16.\det(P) \;=\; \det\bigl(\adj(A)\bigr) \;=\;4^{\,3-1} \;=\;16.
  2. Compute det(P)\det(P) in terms of α\alpha:

    det ⁣P=13344α1324+31324=0    α(46)  +  3(46)=2α    6.\det\!P = 1 \begin{vmatrix}3 & 3\\[3pt]4 & 4\end{vmatrix} -\alpha \begin{vmatrix}1 & 3\\[3pt]2 & 4\end{vmatrix} +3 \begin{vmatrix}1 & 3\\[3pt]2 & 4\end{vmatrix} = 0 \;-\;\alpha(4-6)\;+\;3(4-6) = 2\alpha \;-\;6.
  3. Set equal to 16:

    2α6=162α=22α=11.2\alpha - 6 = 16 \quad\Longrightarrow\quad 2\alpha = 22 \quad\Longrightarrow\quad \alpha = 11.