Solveeit Logo

Question

Question: If matrix A is \[ \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}, \] then valu...

If matrix A is

[112302103],\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix},

then value of adjA\lvert \operatorname{adj}A\rvert is

A

11

B

121

C

1331

D

None

Answer

121

Explanation

Solution

Step 1: Compute detA\det A.

detA=1(03(2)0)    (1)(33(2)1)  +  2(3001)=0+1(9+2)+0=11.\det A = 1\bigl(0\cdot3 -(-2)\cdot0\bigr) \;-\;(-1)\bigl(3\cdot3 -(-2)\cdot1\bigr) \;+\;2\bigl(3\cdot0 -0\cdot1\bigr) = 0 +1\cdot(9+2)+0 = 11.

Step 2: Use the property
For an n×nn\times n matrix AA,

det(adjA)=(detA)n1.\det(\operatorname{adj}A) = (\det A)^{\,n-1}.

Here n=3n=3, so

adjA=(detA)2=112=121.\lvert\operatorname{adj}A\rvert = (\det A)^{2} = 11^2 = 121.