Solveeit Logo

Question

Question: If inverse of \(A = \begin{bmatrix} \alpha & 1 & 2 \\[6pt] 0 & 3 & 1 \\[6pt] 1 & 1 & 1 \end{bmatrix}...

If inverse of A=[α12031111]A = \begin{bmatrix} \alpha & 1 & 2 \\[6pt] 0 & 3 & 1 \\[6pt] 1 & 1 & 1 \end{bmatrix} exist, then the value of α\alpha cannot be

A

5

B

-5

C

52\tfrac{5}{2}

D

52\tfrac{-5}{2}

Answer

52\tfrac{5}{2}

Explanation

Solution

To have an inverse, det(A)0\det(A)\neq 0. Compute the determinant by cofactor expansion along the first row:

det(A)=α311110111+20311.\det(A) = \alpha\begin{vmatrix}3 & 1\\[3pt]1 & 1\end{vmatrix} - 1\begin{vmatrix}0 & 1\\[3pt]1 & 1\end{vmatrix} + 2\begin{vmatrix}0 & 3\\[3pt]1 & 1\end{vmatrix}.

Evaluate each minor:

3111=3111=2,0111=0111=1,0311=0131=3.\begin{vmatrix}3 & 1\\1 & 1\end{vmatrix} =3\cdot1 -1\cdot1=2,\quad \begin{vmatrix}0 & 1\\1 & 1\end{vmatrix} =0\cdot1 -1\cdot1=-1,\quad \begin{vmatrix}0 & 3\\1 & 1\end{vmatrix} =0\cdot1 -3\cdot1=-3.

Thus,

det(A)=α2    1(1)  +  2(3)=2α+16=2α5.\det(A) = \alpha\cdot2 \;-\;1\cdot(-1)\;+\;2\cdot(-3) =2\alpha +1 -6 =2\alpha -5.

For det(A)0\det(A)\neq0, we require 2α502\alpha -5 \neq 0, i.e.\ α52\alpha \neq \tfrac{5}{2}.