Solveeit Logo

Question

Question: Q. If every element of a square non singular matrix A is multiplied by k and the new matrix is denot...

Q. If every element of a square non singular matrix A is multiplied by k and the new matrix is denoted by B then |A^{-1}| and |B^{-1}| are related as

A

|A^{-1}| = k|B^{-1}|

B

|A^{-1}| = \frac{1}{k}|B^{-1}|

C

|A^{-1}| = k^{n}|B^{-1}|

D

|A^{-1}| = k^{-n}|B^{-1}|

Answer

|A^{-1}| = k^{n}|B^{-1}|

Explanation

Solution

Step 1: Let A be an n×n nonsingular matrix.
Step 2: Define B = kA, so
det(B)=det(kA)=kndet(A).\det(B)=\det(kA)=k^n\det(A).
Step 3: Then

B1=(kA)1=1kA1det(B1)=(1k)ndet(A1).B^{-1}=(kA)^{-1}=\tfrac{1}{k}A^{-1} \quad\Longrightarrow\quad \det(B^{-1})=\bigl(\tfrac{1}{k}\bigr)^n\det\bigl(A^{-1}\bigr).

Step 4: Rearranging gives

det(A1)=kndet(B1),\det(A^{-1})=k^n\det(B^{-1}),

hence A1=knB1|A^{-1}|=k^n|B^{-1}|.