Solveeit Logo

Question

Question: If $A(x)=\begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$, then $(A(x))^{-1}$ is e...

If A(x)=[cosxsinxsinxcosx]A(x)=\begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}, then (A(x))1(A(x))^{-1} is equal to :

A

A(x)A(x)

B

A(x)-A(x)

C

A(x)A(-x)

D

None

Answer

A(x)A(-x)

Explanation

Solution

Key Idea: A(x)A(x) is a rotation matrix, so it is orthogonal and satisfies A(x)1=A(x)TA(x)^{-1}=A(x)^{T}.
Computation:

A(x)T=[cosxsinxsinxcosx]=[cos(x)sin(x)sin(x)cos(x)]=A(x).A(x)^{T} =\begin{bmatrix} \cos x & \sin x\\ -\sin x & \cos x \end{bmatrix} =\begin{bmatrix} \cos(-x) & -\sin(-x)\\ \sin(-x) & \cos(-x) \end{bmatrix} = A(-x).

Hence, (A(x))1=A(x)(A(x))^{-1}=A(-x).