Solveeit Logo

Question

Question: If $2f(x)-3f(\frac{1}{x})=x^2, x$ is not equal to zero, then $f(2)$ is equal to...

If 2f(x)3f(1x)=x2,x2f(x)-3f(\frac{1}{x})=x^2, x is not equal to zero, then f(2)f(2) is equal to

A

74-\frac{7}{4}

B

52\frac{5}{2}

C

-1

D

None of these

Answer

-\frac{7}{4}

Explanation

Solution

To find f(2)f(2), we substitute x=2x=2 into the given equation: 2f(2)3f(12)=42f(2) - 3f\left(\frac{1}{2}\right) = 4

Next, substitute x=12x = \frac{1}{2} into the original equation: 2f(12)3f(2)=142f\left(\frac{1}{2}\right) - 3f(2) = \frac{1}{4}

Now we have a system of two equations:

  1. 2f(2)3f(12)=42f(2) - 3f\left(\frac{1}{2}\right) = 4
  2. 2f(12)3f(2)=142f\left(\frac{1}{2}\right) - 3f(2) = \frac{1}{4}

Multiply the first equation by 2 and the second equation by 3:

  1. 4f(2)6f(12)=84f(2) - 6f\left(\frac{1}{2}\right) = 8
  2. 6f(12)9f(2)=346f\left(\frac{1}{2}\right) - 9f(2) = \frac{3}{4}

Add the two equations to eliminate f(12)f\left(\frac{1}{2}\right): 5f(2)=8+34=324+34=354-5f(2) = 8 + \frac{3}{4} = \frac{32}{4} + \frac{3}{4} = \frac{35}{4}

Solve for f(2)f(2): f(2)=3545=74f(2) = -\frac{35}{4 \cdot 5} = -\frac{7}{4}

Therefore, f(2)=74f(2) = -\frac{7}{4}.