Solveeit Logo

Question

Question: Q fmd value of K for which $6x^2+11xy-10y^2+x+31y+k=0$ rep. Pair of STL....

Q fmd value of K for which 6x2+11xy10y2+x+31y+k=06x^2+11xy-10y^2+x+31y+k=0 rep. Pair of STL.

Answer

-15

Explanation

Solution

The given equation is 6x2+11xy10y2+x+31y+k=06x^2+11xy-10y^2+x+31y+k=0. This is a general second-degree equation of the form ax2+2hxy+by2+2gx+2fy+c=0ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0. Comparing the given equation with the general form, we identify the coefficients: a=6a = 6

2h=11    h=1122h = 11 \implies h = \frac{11}{2}

b=10b = -10

2g=1    g=122g = 1 \implies g = \frac{1}{2}

2f=31    f=3122f = 31 \implies f = \frac{31}{2}

c=kc = k

A general second-degree equation represents a pair of straight lines if and only if the determinant of the matrix of coefficients is zero:

ahghbfgfc=0\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0

Expanding the determinant, the condition is abc+2fghaf2bg2ch2=0abc + 2fgh - af^2 - bg^2 - ch^2 = 0.

Substitute the values of the coefficients into this condition: a=6,b=10,c=k,h=112,g=12,f=312a=6, b=-10, c=k, h=\frac{11}{2}, g=\frac{1}{2}, f=\frac{31}{2}

abc=(6)(10)(k)=60kabc = (6)(-10)(k) = -60k

2fgh=2(312)(12)(112)=31×114=34142fgh = 2 \left(\frac{31}{2}\right) \left(\frac{1}{2}\right) \left(\frac{11}{2}\right) = \frac{31 \times 11}{4} = \frac{341}{4}

af2=6(312)2=6×9614=3×9612=28832af^2 = 6 \left(\frac{31}{2}\right)^2 = 6 \times \frac{961}{4} = \frac{3 \times 961}{2} = \frac{2883}{2}

bg2=(10)(12)2=10×14=104=52bg^2 = (-10) \left(\frac{1}{2}\right)^2 = -10 \times \frac{1}{4} = -\frac{10}{4} = -\frac{5}{2}

ch2=k(112)2=k×1214=121k4ch^2 = k \left(\frac{11}{2}\right)^2 = k \times \frac{121}{4} = \frac{121k}{4}

Substitute these terms into the determinant condition: 60k+341428832(52)121k4=0-60k + \frac{341}{4} - \frac{2883}{2} - \left(-\frac{5}{2}\right) - \frac{121k}{4} = 0

To eliminate fractions, multiply the entire equation by 4: 4(60k)+4(3414)4(28832)4(52)4(121k4)=04(-60k) + 4\left(\frac{341}{4}\right) - 4\left(\frac{2883}{2}\right) - 4\left(-\frac{5}{2}\right) - 4\left(\frac{121k}{4}\right) = 0

240k+3412(2883)2(5)121k=0-240k + 341 - 2(2883) - 2(-5) - 121k = 0

240k+3415766+10121k=0-240k + 341 - 5766 + 10 - 121k = 0

Group the terms with kk and the constant terms: (240k121k)+(341+105766)=0(-240k - 121k) + (341 + 10 - 5766) = 0

361k+(3515766)=0-361k + (351 - 5766) = 0

361k5415=0-361k - 5415 = 0

361k=5415-361k = 5415

k=5415361k = -\frac{5415}{361}

To simplify the fraction, we can test for common factors. We know 361=192361 = 19^2. Divide 5415 by 19: 5415÷19=2855415 \div 19 = 285. Divide 285 by 19: 285÷19=15285 \div 19 = 15. So, 5415=19×285=19×19×15=361×155415 = 19 \times 285 = 19 \times 19 \times 15 = 361 \times 15.

Therefore, k=361×15361=15k = -\frac{361 \times 15}{361} = -15.

The value of kk for which the given equation represents a pair of straight lines is 15-15.