Solveeit Logo

Question

Question: Find the set of values of $p$ for which the angle between the vectors $\vec{V_1}=x^2\hat{i}+2p\hat{...

Find the set of values of pp for which the angle between the vectors

V1=x2i^+2pj^+12k^\vec{V_1}=x^2\hat{i}+2p\hat{j}+\frac{1}{2}\hat{k}

V2=pi^+xj^+k^\vec{V_2}=p\hat{i}+x\hat{j}+\hat{k} is acute xR\forall x\in R.

V1.V2>0\Rightarrow \vec{V_1}.\vec{V_2}>0 - For acute angle

Answer

The set of values of pp is [0,12)[0, \frac{1}{2}).

Explanation

Solution

The angle between two vectors V1\vec{V_1} and V2\vec{V_2} is acute if their dot product is positive, i.e., V1V2>0\vec{V_1} \cdot \vec{V_2} > 0.

Given vectors are: V1=x2i^+2pj^+12k^\vec{V_1} = x^2\hat{i} + 2p\hat{j} + \frac{1}{2}\hat{k} V2=pi^+xj^+k^\vec{V_2} = p\hat{i} + x\hat{j} + \hat{k}

Calculate the dot product: V1V2=(x2)(p)+(2p)(x)+(12)(1)\vec{V_1} \cdot \vec{V_2} = (x^2)(p) + (2p)(x) + \left(\frac{1}{2}\right)(1) V1V2=px2+2px+12\vec{V_1} \cdot \vec{V_2} = px^2 + 2px + \frac{1}{2}

We need this expression to be strictly positive for all xRx \in R: px2+2px+12>0xRpx^2 + 2px + \frac{1}{2} > 0 \quad \forall x \in R

We consider two cases for the coefficient of x2x^2:

Case 1: p=0p = 0 If p=0p=0, the inequality becomes: (0)x2+2(0)x+12>0(0)x^2 + 2(0)x + \frac{1}{2} > 0 12>0\frac{1}{2} > 0 This statement is true. Thus, p=0p=0 is a valid value for which the angle is acute for all xRx \in R.

Case 2: p0p \neq 0 If p0p \neq 0, the expression px2+2px+12px^2 + 2px + \frac{1}{2} is a quadratic in xx. For a quadratic expression Ax2+Bx+CAx^2 + Bx + C to be strictly positive for all real xx, two conditions must be met:

  1. The leading coefficient AA must be positive (A>0A > 0).
  2. The discriminant DD must be negative (D<0D < 0), indicating no real roots, so the parabola never touches or crosses the x-axis.

In our quadratic px2+2px+12px^2 + 2px + \frac{1}{2}, we have A=pA=p, B=2pB=2p, and C=12C=\frac{1}{2}.

Condition 1: p>0p > 0.

Condition 2: D<0D < 0 The discriminant DD is B24ACB^2 - 4AC. D=(2p)24(p)(12)D = (2p)^2 - 4(p)\left(\frac{1}{2}\right) D=4p22pD = 4p^2 - 2p We need D<0D < 0: 4p22p<04p^2 - 2p < 0 Factor out 2p2p: 2p(2p1)<02p(2p - 1) < 0 To solve this inequality, we find the roots of 2p(2p1)=02p(2p-1)=0, which are p=0p=0 and p=12p=\frac{1}{2}. Since the parabola 4p22p4p^2-2p opens upwards, 2p(2p1)2p(2p-1) is negative between its roots. So, 0<p<120 < p < \frac{1}{2}.

Combining Condition 1 (p>0p>0) and Condition 2 (0<p<120 < p < \frac{1}{2}), the intersection is 0<p<120 < p < \frac{1}{2}.

Conclusion: From Case 1, p=0p=0 is a valid value. From Case 2, 0<p<120 < p < \frac{1}{2} are valid values. Combining both cases, the set of values for pp is [0,12)[0, \frac{1}{2}).