Solveeit Logo

Question

Question: Find the orthogonal trajectories of the following families : (i) $x^2 - \frac{1}{3}y^2 = a^2 \longr...

Find the orthogonal trajectories of the following families :

(i) x213y2=a22x23ydydx=0x^2 - \frac{1}{3}y^2 = a^2 \longrightarrow 2x - \frac{2}{3}y\frac{dy}{dx} = 0

(ii) y=tanx+cDEof:xy3dydx=0y = \tan x + c \quad DE \quad of : x - \frac{y}{3}\frac{dy}{dx} = 0

(iii) cosy=aexfamily of curves\cos y = ae^{-x} \quad \text{family of curves}

(iv) y2=4(xa)y^2 = 4(x-a)

replacedydx by 1dydx\downarrow \quad \text{replace} \frac{dy}{dx} \text{ by } -\frac{1}{\frac{dy}{dx}}

Answer

The question asks to find the orthogonal trajectories for four families of curves. The solutions are: (i) 3x2+y2=C3x^2 + y^2 = C' (ii) 3x2+y2=C3x^2 + y^2 = C' (iii) siny=Aex\sin y = A e^{-x} (iv) y=Aex/2y = A e^{-x/2}

Explanation

Solution

Here's a breakdown of how to find the orthogonal trajectories for each family:

Part (i) Family: x213y2=a2x^2 - \frac{1}{3}y^2 = a^2

  1. The given DE is 2x23ydydx=02x - \frac{2}{3}y\frac{dy}{dx} = 0, which simplifies to dydx=3xy\frac{dy}{dx} = \frac{3x}{y}.
  2. For orthogonal trajectories, replace dydx\frac{dy}{dx} with 1dydx-\frac{1}{\frac{dy}{dx}}, yielding dydx=y3x\frac{dy}{dx} = -\frac{y}{3x}.
  3. Solve by separation of variables: ydy=3xdxy \, dy = -3x \, dx.
  4. Integrate: ydy=3xdx    y22=3x22+C1    3x2+y2=C\int y \, dy = \int -3x \, dx \implies \frac{y^2}{2} = -\frac{3x^2}{2} + C_1 \implies 3x^2 + y^2 = C'.

Part (ii) Family defined by DE: xy3dydx=0x - \frac{y}{3}\frac{dy}{dx} = 0

  1. The DE is dydx=3xy\frac{dy}{dx} = \frac{3x}{y}.
  2. For orthogonal trajectories, dydx=y3x\frac{dy}{dx} = -\frac{y}{3x}.
  3. Solve by separation of variables: ydy=3xdxy \, dy = -3x \, dx.
  4. Integrate: ydy=3xdx    y22=3x22+C1    3x2+y2=C\int y \, dy = \int -3x \, dx \implies \frac{y^2}{2} = -\frac{3x^2}{2} + C_1 \implies 3x^2 + y^2 = C'.

Part (iii) Family: cosy=aex\cos y = ae^{-x}

  1. Differentiate: sinydydx=aex-\sin y \frac{dy}{dx} = -ae^{-x}. Substitute aex=cosyae^{-x} = \cos y to get sinydydx=cosy\sin y \frac{dy}{dx} = \cos y, so dydx=coty\frac{dy}{dx} = \cot y.
  2. For orthogonal trajectories, dydx=1coty=tany\frac{dy}{dx} = -\frac{1}{\cot y} = -\tan y.
  3. Solve by separation of variables: dytany=dx    cotydy=dx\frac{dy}{\tan y} = -dx \implies \cot y \, dy = -dx.
  4. Integrate: cotydy=dx    lnsiny=x+C1    siny=Aex\int \cot y \, dy = \int -dx \implies \ln|\sin y| = -x + C_1 \implies \sin y = A e^{-x}.

Part (iv) Family: y2=4(xa)y^2 = 4(x-a)

  1. Differentiate: 2ydydx=42y \frac{dy}{dx} = 4, so dydx=2y\frac{dy}{dx} = \frac{2}{y}.
  2. For orthogonal trajectories, dydx=12y=y2\frac{dy}{dx} = -\frac{1}{\frac{2}{y}} = -\frac{y}{2}.
  3. Solve by separation of variables: dyy=12dx\frac{dy}{y} = -\frac{1}{2} dx.
  4. Integrate: dyy=12dx    lny=12x+C1    y=Aex/2\int \frac{dy}{y} = \int -\frac{1}{2} dx \implies \ln|y| = -\frac{1}{2}x + C_1 \implies y = A e^{-x/2}.