Question
Question: Find the orthogonal trajectories of the following families : (i) $x^2 - \frac{1}{3}y^2 = a^2 \longr...
Find the orthogonal trajectories of the following families :
(i) x2−31y2=a2⟶2x−32ydxdy=0
(ii) y=tanx+cDEof:x−3ydxdy=0
(iii) cosy=ae−xfamily of curves
(iv) y2=4(x−a)
↓replacedxdy by −dxdy1

Answer
The question asks to find the orthogonal trajectories for four families of curves. The solutions are: (i) 3x2+y2=C′ (ii) 3x2+y2=C′ (iii) siny=Ae−x (iv) y=Ae−x/2
Explanation
Solution
Here's a breakdown of how to find the orthogonal trajectories for each family:
Part (i) Family: x2−31y2=a2
- The given DE is 2x−32ydxdy=0, which simplifies to dxdy=y3x.
- For orthogonal trajectories, replace dxdy with −dxdy1, yielding dxdy=−3xy.
- Solve by separation of variables: ydy=−3xdx.
- Integrate: ∫ydy=∫−3xdx⟹2y2=−23x2+C1⟹3x2+y2=C′.
Part (ii) Family defined by DE: x−3ydxdy=0
- The DE is dxdy=y3x.
- For orthogonal trajectories, dxdy=−3xy.
- Solve by separation of variables: ydy=−3xdx.
- Integrate: ∫ydy=∫−3xdx⟹2y2=−23x2+C1⟹3x2+y2=C′.
Part (iii) Family: cosy=ae−x
- Differentiate: −sinydxdy=−ae−x. Substitute ae−x=cosy to get sinydxdy=cosy, so dxdy=coty.
- For orthogonal trajectories, dxdy=−coty1=−tany.
- Solve by separation of variables: tanydy=−dx⟹cotydy=−dx.
- Integrate: ∫cotydy=∫−dx⟹ln∣siny∣=−x+C1⟹siny=Ae−x.
Part (iv) Family: y2=4(x−a)
- Differentiate: 2ydxdy=4, so dxdy=y2.
- For orthogonal trajectories, dxdy=−y21=−2y.
- Solve by separation of variables: ydy=−21dx.
- Integrate: ∫ydy=∫−21dx⟹ln∣y∣=−21x+C1⟹y=Ae−x/2.
