Solveeit Logo

Question

Question: Calculate Ecell expression $Pt_{(s)}|H_{2(g)}|ACOOH_{(aq)}||ACOOH_{(aq)}|H_{2(g)}|Pt_{(s)}$ 1 atm $...

Calculate Ecell expression

Pt(s)H2(g)ACOOH(aq)ACOOH(aq)H2(g)Pt(s)Pt_{(s)}|H_{2(g)}|ACOOH_{(aq)}||ACOOH_{(aq)}|H_{2(g)}|Pt_{(s)} 1 atm C1Ka1C_{1} K_{a_{1}} C2Ka2C_{2} K_{a_{2}} 1 atm

ACOOHH++ACOΘACOOH \rightleftharpoons H^+ + ACO\Theta

C1C_{1} C1C1α1C_{1}-C_{1}\alpha_{1} C1αC_{1}\alpha C1α1C_{1}\alpha_{1}

Anode: (H2)a(g)2Ha+2e(H_{2})_{a(g)} \rightarrow 2H_{a}^{\oplus} + 2e^{\ominus} Cathode: 2Hc+2e(H2)c(g)2H_{c}^{\oplus} + 2e^{\ominus} \rightarrow (H_{2})_{c(g)}

Answer

E_{cell} = 0.0591 \log_{10} \left( \frac{-K_{a2} + \sqrt{K_{a2}^2 + 4K_{a2} C_2}}{-K_{a1} + \sqrt{K_{a1}^2 + 4K_{a1} C_1}} \right)

Explanation

Solution

The cell is a concentration cell with identical hydrogen electrodes but different electrolyte concentrations. Ecell=0E_{cell}^\circ = 0. The Nernst equation for this cell simplifies to Ecell=0.0591log10([Hcathode+][Hanode+])E_{cell} = 0.0591 \log_{10} \left( \frac{[H^+_{cathode}]}{[H^+_{anode}]} \right). For a weak acid ACOOHACOOH, the hydrogen ion concentration [H+][H^+] is determined by solving the equilibrium expression Ka=[H+]2C[H+]K_a = \frac{[H^+]^2}{C-[H^+]}, which yields [H+]=Ka+Ka2+4KaC2[H^+] = \frac{-K_a + \sqrt{K_a^2 + 4K_a C}}{2}. Substituting these exact expressions for [H+][H^+] in the anode (C1,Ka1C_1, K_{a1}) and cathode (C2,Ka2C_2, K_{a2}) compartments into the Nernst equation gives the final Ecell expression.