Solveeit Logo

Question

Question: Calculate $E_{Cu^{+2}/Cu}$ at $pH=14$; given that $K_{sp}$ of $Cu(OH)_2 = 10^{-19}$; $E_{Cu^{+2}/Cu}...

Calculate ECu+2/CuE_{Cu^{+2}/Cu} at pH=14pH=14; given that KspK_{sp} of Cu(OH)2=1019Cu(OH)_2 = 10^{-19}; ECu+2/Cu=0.034VE_{Cu^{+2}/Cu}^\circ = 0.034V at 298K298K.

Answer

-0.22 V

Explanation

Solution

To calculate the reduction potential ECu+2/CuE_{Cu^{+2}/Cu} at pH=14, we need to determine the concentration of Cu2+Cu^{2+} ions under these conditions and then apply the Nernst equation.

1. Determine [OH][OH^-] from pH: Given pH = 14. At 298 K, pH + pOH = 14. So, pOH = 14 - pH = 14 - 14 = 0. Therefore, the concentration of hydroxide ions is [OH]=10pOH=100=1[OH^-] = 10^{-pOH} = 10^0 = 1 M.

2. Determine [Cu2+][Cu^{2+}] from KspK_{sp}: The dissolution equilibrium for copper(II) hydroxide is: Cu(OH)2(s)Cu2+(aq)+2OH(aq)Cu(OH)_2(s) \rightleftharpoons Cu^{2+}(aq) + 2OH^-(aq) The solubility product constant (KspK_{sp}) is given by: Ksp=[Cu2+][OH]2K_{sp} = [Cu^{2+}][OH^-]^2 Given KspK_{sp} of Cu(OH)2=1019Cu(OH)_2 = 10^{-19} and we found [OH]=1[OH^-] = 1 M. 1019=[Cu2+](1)210^{-19} = [Cu^{2+}](1)^2 [Cu2+]=1019[Cu^{2+}] = 10^{-19} M

3. Apply the Nernst Equation: The half-cell reaction for the copper couple is: Cu2+(aq)+2eCu(s)Cu^{2+}(aq) + 2e^- \rightarrow Cu(s) The Nernst equation for this reaction at 298 K is: ECu2+/Cu=ECu2+/Cu0.059nlog1[Cu2+]E_{Cu^{2+}/Cu} = E^\circ_{Cu^{2+}/Cu} - \frac{0.059}{n} \log \frac{1}{[Cu^{2+}]} Here, n=2n = 2 (number of electrons transferred).

Note on ECu+2/CuE^\circ_{Cu^{+2}/Cu}: The question states ECu+2/Cu=0.034VE^\circ_{Cu^{+2}/Cu} = 0.034V. However, the standard reduction potential for Cu2+/CuCu^{2+}/Cu is commonly accepted as +0.34 V. The similar question also uses +0.34 V and leads to a standard result. Assuming the given value 0.034V0.034V is a typo and should be 0.34V0.34V to align with standard values and typical problem expectations:

Using ECu2+/Cu=0.34E^\circ_{Cu^{2+}/Cu} = 0.34 V: ECu2+/Cu=0.340.0592log11019E_{Cu^{2+}/Cu} = 0.34 - \frac{0.059}{2} \log \frac{1}{10^{-19}} ECu2+/Cu=0.340.0592log(1019)E_{Cu^{2+}/Cu} = 0.34 - \frac{0.059}{2} \log (10^{19}) ECu2+/Cu=0.34(0.0295×19)E_{Cu^{2+}/Cu} = 0.34 - (0.0295 \times 19) ECu2+/Cu=0.340.5605E_{Cu^{2+}/Cu} = 0.34 - 0.5605 ECu2+/Cu=0.2205E_{Cu^{2+}/Cu} = -0.2205 V

Rounding to two decimal places, ECu2+/Cu=0.22E_{Cu^{2+}/Cu} = -0.22 V.

If we strictly use the value given in the question, ECu+2/Cu=0.034VE^\circ_{Cu^{+2}/Cu} = 0.034V: ECu2+/Cu=0.0340.0592×19E_{Cu^{2+}/Cu} = 0.034 - \frac{0.059}{2} \times 19 ECu2+/Cu=0.0340.5605E_{Cu^{2+}/Cu} = 0.034 - 0.5605 ECu2+/Cu=0.5265E_{Cu^{2+}/Cu} = -0.5265 V

Given the context of similar problems and standard values, it is highly probable that ECu+2/Cu=0.34VE^\circ_{Cu^{+2}/Cu} = 0.34V was intended. Therefore, we proceed with the result obtained using 0.34V0.34V.

The final answer is 0.22V\boxed{-0.22 V}.

Explanation of the solution:

  1. Calculate [OH][OH^-] from pH=14: pOH = 0, so [OH]=1[OH^-] = 1 M.
  2. Calculate [Cu2+][Cu^{2+}] from Ksp=[Cu2+][OH]2K_{sp} = [Cu^{2+}][OH^-]^2: [Cu2+]=Ksp/[OH]2=1019/(1)2=1019[Cu^{2+}] = K_{sp}/[OH^-]^2 = 10^{-19}/(1)^2 = 10^{-19} M.
  3. Apply Nernst equation: ECu2+/Cu=ECu2+/Cu0.0592log1[Cu2+]E_{Cu^{2+}/Cu} = E^\circ_{Cu^{2+}/Cu} - \frac{0.059}{2} \log \frac{1}{[Cu^{2+}]}. Using ECu2+/Cu=0.34VE^\circ_{Cu^{2+}/Cu} = 0.34 V (assuming typo correction from 0.034V): ECu2+/Cu=0.340.0592log(1019)=0.340.0295×19=0.340.5605=0.2205VE_{Cu^{2+}/Cu} = 0.34 - \frac{0.059}{2} \log(10^{19}) = 0.34 - 0.0295 \times 19 = 0.34 - 0.5605 = -0.2205 V.

Answer:

The calculated ECu+2/CuE_{Cu^{+2}/Cu} at pH=14 is -0.22 V.