Solveeit Logo

Question

Question: In the circuit shown below, the charge on the 60 μF capacitor is...

In the circuit shown below, the charge on the 60 μF capacitor is

A

150 μC

B

100 μC

C

50 μC

D

75 μC

Answer

150 μC

Explanation

Solution

Step 1: Identify the bridge network and check balance
We have two series branches between the same nodes:

  • Top branch: 30 μF – 60 μF
  • Bottom branch: 15 μF – 30 μF
    With a central 80 μF between the junctions.
    The bridge is balanced if
C1C3  =  C2C43015  =  6030  =  2\frac{C_{1}}{C_{3}} \;=\;\frac{C_{2}}{C_{4}} \quad\Longrightarrow\quad \frac{30}{15} \;=\;\frac{60}{30} \;=\;2

Hence no current (charge) flows through the 80 μF, so it can be removed.

Step 2: Reduce each series branch
Top branch equivalent:

Ct=30×6030+60=20  μFC_{t} = \frac{30\times60}{30+60} = 20\;\mu\text{F}

Bottom branch equivalent:

Cb=15×3015+30=10  μFC_{b} = \frac{15\times30}{15+30} = 10\;\mu\text{F}

Step 3: Parallel combination of the two reduced branches

Cnet=Ct+Cb=20+10=30  μFC_{\text{net}} = C_{t} + C_{b} = 20+10 = 30\;\mu\text{F}

Step 4: Series with the bottom 30 μF capacitor and the 10 V source
Total series capacitance:

Ceq=30×3030+30=15  μFC_{\text{eq}} = \frac{30\times30}{30+30} = 15\;\mu\text{F}

Charge on each series element:

Q=Ceq×V=15  μF×10  V=150  μCQ = C_{\text{eq}}\times V = 15\;\mu\text{F}\times10\;\text{V} = 150\;\mu\text{C}

Since the 60 μF capacitor is in series in the top branch, it carries the same charge:

Q60=150  μC\boxed{Q_{60} = 150\;\mu\text{C}}